博碩士論文 91522022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.16.76.102
姓名 胡為凱(Wei-Kai Hu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 在無線感測網路中之定位與時間同步演算法
(Localization and Time Synchronization for Wireless Sensor Networks)
相關論文
★ 無線行動隨建即連網路上之廣播與繞徑問題★ 熱門電影的高效能廣播演算法
★ 無線行動隨建即連網路上之媒體存取問題★ 使用功率調整來增加多節點封包無線網路
★ 在無線行動隨建即用網路下Geocast 之設計與實做經驗★ 一個適用於熱門隨選視訊服務之快速排程廣播策略
★ 應用數位浮水印技術於影像之智慧財產權保護與認證★ 在寬頻分碼多重擷取技術上分配及再分配多重正交可變展頻係數碼
★ 無線行動隨建即連網路上之廣播排程協定★ 在無線行動隨建即連網路下支援即時多媒體傳送的媒介存取協定
★ 以樹狀結構為基礎的Scatternet建構協定★ 在無線感應器網路中具有省電機制並且採用對角線路徑的方向性擴散
★ 隨意型無線網路上一個具有能量保存的GRID繞徑協定★ 在無線感應器網路中具有省電機制的傳輸協定
★ 隨意型無線網路上一個具有能量保存以及平衡的繞徑協定★ 環形藍芽網路:一個藍芽通訊網路的新拓樸及其繞徑協定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於近代科學及技術的大幅度進步,致使微小且低成本之感測器之得以實現,由這些微型感測器所組成之無線感測器網路正逐漸受到注目,目前也已利用在各種應用領域,如動物棲息環境之監測、健康照護、大樓與家庭自動化和交通流量控制等。在各式各樣的線感測器網路應用中,由感測器所偵測到的數據通常需要結合偵測當下的正確時間與位置資訊,才得以讓使用者用進一步的分析和處理。此外,許多感測器網路之協定任務及演算法要求每個感測器維持一個全域計時器,以及得知自身目前的所在位置,以便這些任務或演算法可以正確執行。因此,時間同步與定位是無線感測器網路中必要且重要的兩項服務。在傳統的無線網路中,已設計出許多方法來達成時間同步與定位,但無線感測器網路因其獨有之特性,如有限的電量供給和大規模之網路環境等,使得其與傳統無線網路有所不同,為使無線感測器網路具備此兩項服務,則必須發展新的解決方法。
為使所有感測節點維護一個同步於參考節點的計時器,我們提出一個在無線感測器網路中多步跳躍的時間同步協定,在此協定中,未同步節點藉由估算出與參考點間的時脈飄移率與時間偏移量,使自身達成同步狀態,而且利用週期性的重新同步程序,一些未能達成時間同步的情況,如節點損壞或網路拓樸改變等,皆可輕易地克服。我們並在Berkeley大學開發的MICAz硬體平台中實作我們的時間同步協定,而實驗所採用網路設定分別為5個感測器及18個感測器的多步跳躍拓樸環境,另外重新同步週期長度則各設定為30秒及300秒。實驗結果顯示,執行我們所設計的同步協定的節點,其平均同步誤差約略在數個毫秒左右,亦比之前他人所提出的同步協定表現較好。我們所提出的同步協定只利用較少的通訊花費(communication overhead),卻能建構出強健的同步環境給予網路中之節點,當不同的應用情境要求不同的同步準確性時,我們的同步協定可藉由調整同步週期來達成其需求。
另一方面,為了在行動感測網路中取得節點的位置資訊,我們亦提出了一個自我定位方法,此方法改善了先前基於序列蒙地卡羅法的定位方法。我們提出的定位方法作用於網路中有部分節點(錨節點)已事先得知其自身的位置,未知位置的節點將會利用一群合法的位置樣本來代表目前自身的位置,而此合法的位置樣本,主要由來自兩步跳躍內的已知位置鄰居節點的位置資訊,以及一步跳躍內未知位置但已初步定位的鄰居節點的位置資訊,來過濾取得。此外,我們也提出了移動方向預測方法,來進一步地加強定位的精確度。我們亦透過各種的節點移動模型,和不同的節點移動速率的網路情境設置,來進行模擬實驗,其結果顯示我們所提出的定位方法,在大部分的網路情境中,其表現較其它基於序列蒙地卡羅法的定位方法好。由於利用了未知自身實際位置的鄰居,所提供的初步估算的位置資訊,以致我們的定位方法可以在低錨節點(Anchor)密度的網路環境中持續運作。再者,在我們的定位方法中,依據每個節點在每個時段所估算出的取樣區域面積,來決定其位置樣本之個數,如此便降低了運算成本與佔用的記憶體空間。而為了降低網路傳輸成本,我們設計了一個簡易扇形化方法,此方法主要將未知節點的可能所在區域以數個扇形來表示。我們亦提出了一個新的移動方向限制條件,來取得更準確的位置樣本來估算所在位置。
摘要(英) Wireless sensor networks (WSNs), which are formed by tiny and low-cost sensor nodes derived from the recent advances of science and technology, have been gradually paid more attention and now are being used for a variety of application areas, including environmental and habitat monitoring, health care, building/home automation, traffic control, etc. Among various WSN applications, the sensor readings from network nodes will be valuable to users for advance analyzing or processing if the correct time and location information at the moment is attached to them. Moreover, many collaborative tasks or algorithms need each sensor node to maintain a global clock and be aware of its current locations at the same time so that the tasks or algorithms can be run well. Thus, both time synchronization and localization for sensor nodes are essential and important services in WSNs. There have been many schemes proposed to realize these two services in traditional wireless networks. However, wireless sensor networks are rather different from traditional wireless networks due to restricted energy resource, large network scale and so on. Hence, new solutions for these two services must be proposed specially in WSNs.
To let all nodes maintain a global clock which is synchronized to that of a reference node, we design a time synchronization protocol for multi-hop WSNs. In the proposed protocol, unsynchronized node estimates the clock drift ratio and offset with the reference node to become synchronized. By periodical re-synchronization, the un-synchronization conditions such as nodes failures or topology change can be easily overcome. We implement our protocol in the Berkeley MICAz platform. The experimenting scenarios are 5-node and 18-node multi-hop topologies, and the re-synchronization periods are 30-second and 300-second. The experiment results show that the average synchronization errors of all nodes run with our protocol are ranged within several micro-seconds and are less than those of the previous protocol. Our proposed protocol uses lower communication overhead and establishes more robust synchronization situations for all nodes in the network. The synchronization accuracy required by different applications can be achieved by using different re-synchronization periods.
To obtain the node location information for mobile sensor networks, we also propose a localization scheme to improve the localization accuracy of previous work based on SMC (Sequential Monte Carlo). It operates under the assumption that a few part of sensor nodes know their positions. The valid samples to represent sensor nodes’ possible locations are filtered upon the location information from the location-aware nodes (anchor nodes) within two hops as well as that from the location-unaware nodes within one hop of which the locations have been initially estimated. In addition, we propose a moving direction predicting method to further enhance the accuracy of the location estimates. Simulation results show that our proposed localization algorithm performs better than other SMC-based algorithms in most network configurations with various mobility models and different moving speeds. Since the estimated location information of neighboring nodes unknown to their actual positions is utilized, our localization scheme can still work well for low anchor-density networks. Furthermore, each node’s number of samples in our proposed scheme is adapted according to the estimated sampling region at each time slot. Thus, the computation cost and memory occupation can be obviously decreased. To minimize the network traffic cost, we use a simple sectoring scheme to represent the possible located region of each location-unaware node. We also propose a novel moving direction constraint to refine more accurate samples for location estimate.
關鍵字(中) ★ 定位
★ 無線感測器網路
★ 時間同步
★ 時脈漂移
★ 非測距
關鍵字(英) ★ range-free
★ localization
★ time synchronization
★ Wireless Sensor Networks (WSNs)
★ clock drift
論文目次 Table of Contents vi
List of Figures viii
List of Tables x
Chpater 1 Introduction 1
1.1 Wireless Sensor Networks 1
1.2 Motivation 4
1.3 Contributions 8
1.4 Organization of this Dissertation 10
Chpater 2 Related Works 12
2.1 Time Synchronization Schemes in WSNs 12
2.2 Localization Schemes in WSNs 18
2.2.1 Localization Approaches for Static WSNs 18
2.2.1.1 Range-based Localization 18
2.2.2.1 Range-free Localization 22
2.2.2 Localization Approaches for Mobile WSNs 30
Chpater 3 Ratio-based Time Synchronization Protocol 36
3.1 Our Proposed Protocol 36
3.1.1 The Synchronization Procedure 36
3.1.2 Achieving Multi-hop Time Synchronization 40
3.2 Experiments 43
3.2.1 Synchronization Errors with a Single-hop Topology 44
3.2.1 Synchronization Errors with Multi-hop Topologies 45
3.3 Summary 52
Chpater 4 The Proposed Localization Scheme 53
4.1 Our Proposed Scheme 53
4.1.1 Sample selection phase 54
4.1.2 Neighbor constraint exchange phase 57
4.1.3 Refinement phase 60
4.2 Performance Evaluation 63
4.2.1 System Model and Parameters 63
4.2.2 Localization error 66
4.2.3 Number of Samples 67
4.2.4 Impact of the anchor node density 68
4.2.5 Impact of the number of normal nodes 69
4.2.6 Impact of the moving speed 70
4.2.7 Impact of the irregular communication range 71
4.2.8 Impact of the mobility model 73
4.2.9 Communication Cost 75
4.3 Summary 77
Chpater 5 Conclusions and Future Works 78
5.1 Contributions 78
5.2 Future Work 80
Bibliography 82
Publications 90
參考文獻 [1] K. Arvind, “Probabilistic Clock Synchronization in Distributed Systems,” IEEE Transactions on Parallel and Distributed Systems, Vol. 5, No. 5, pp. 474-487, May 1994.
[2] A. Baggio and K. Langendoen, “Monte-Carlo Localization for Mobile Wireless Sensor Networks,” in Proceedings of the 2nd International Conference on Mobile Ad-hoc and Sensor Networks, pp. 317-328, Hong Kong, China, Dec. 2006.
[3] P. Bahl and V. N. Padmanabhan, “RADAR: An In-Building RF-Based User Location and Tracking System,” in Proceedings of the 19th IEEE International Conference on Computer Communication (INFOCOM 2000), pp. 775-784, Tel-Aviv, Israel, Mar. 2000.
[4] P. Bergamo and G. Mazzini, “Localization in Sensor Networks with Fading and Mobility,” in Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Lisbon, Portugal, Sept. 2002.
[5] U. Bischoff, M. Strohbach, M. Hazas, and G. Kortuem, “Constraint-based Distance Estimation in Ad-hoc Wireless Sensor Networks,” in Proceedings of the 3rd European Workshop on Wireless Sensor Networks, pp. 54-68, Zurich, Switzerland, Feb. 2006.
[6] P. Bonnet, J. E. Gehrke, and P. Seshadri, “Querying the Physical World,” IEEE Personal Communications, Vol. 7, pp.10-15, Oct. 2000.
[7] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A Performance Comparison of Multi-hop Wireless Ad Hoc Network Routing Protocols,” in Proceedings of the 4th Annual ACM International Conference on Mobile Computing and Networking (MobiCom’98), pp. 85-97, Dallas, USA, Oct. 1998.
[8] N. Bulusu, D. Estrin, L. Girod, and J. Heidemann, “Scalable Coordination for Wireless Sensor Networks: Self-Configuring Localization Systems,” in Proceedings of the 6th International Symposium on Communication Theory and Applications, Ambleside, UK, Jul. 2001.
[9] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less Low Cost Outdoor Localization for Very Small Devices,” IEEE Personal Communications, Vol. 7, No. 5, pp. 28-34, Oct. 2000.
[10] W. Burgard, A. Derr, D. Fox, and A. B. Cremers, “Integrating Global Position Estimation and Position Tracking for Mobile Robots: The Dynamic Markov Localization Approach,” in Proceedings of the 1998 IEEE/RSI International Conference on Intelligence Robots and Systems, pp.730-735, Kyongju, Korea, Oct. 1998.
[11] W. Burgard, D. Fox, D. Hennig and T. Schmidt, “Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids,” in Proceedings of the 13th National Conference on Artificial Intelligence, AAAI Press, pp.896-901, Portland, USA, Aug. 1996.
[12] C.Y. Cho, P. H. Chou, Y.C. Chung, C.T. King, M.J. Tsai, B.J. Lee, and T.Y. Chou, “Wireless Sensor Networks for Debris Flow Observation,” in Proceedings of the 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 615-617, San Francisco, USA, Jun. 2008.
[13] X. Cui, T. Hardin, R. K. Ragade, and A. S. Elmaghraby, “A Swarm-based Fuzzy Logic Control Mobile Sensor Network for Hazardous Contaminants Localization,” in Proceedings of the 2004 IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2004), pp. 194-203, Fort Lauderdale, USA, Oct. 2004.
[14] H. Dai and R. Han, “TSync: A Lightweight Bidirectional Time Synchronization Service for Wireless Sensor Networks,” ACM SIGMOBILE Mobile Computing and Communications Review, Vol. 8, No. 1, pp. 125-139, Jan. 2004.
[15] S. Datta, C. Kinowski, and M. S. Khaleque, “Distributed Localization in Static and Mobile Sensor Networks,” in Proceedings of the 2nd International Conference on Wireless and Mobile Computing, Networking and Communications, pp. 69-76, Montreal, Canada, Jun. 2006.
[16] F. Dellaert, D. Fox, W. Burgard and S. Thrun, “Monte Carlo Localization for Mobile Robots,” in Proceedings of the 1999 IEEE International Conference on Robotics and Automation, pp.1322-1328, Detroit, USA, May 1999.
[17] L. Doherty, K. S. J. Pister, and L. El Ghaoui, “Convex Position Estimation in Wireless Sensor Networks,” in Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2001), Vol. 3, pp. 1655-1663, Anchorage, USA, Apr. 2001.
[18] J. Douceur, “The Sybil Attack”, in Proceedings of the 1st International Workshop on Peer-to-Peer Systems, Cambridge, USA, Mar. 2002.
[19] J. Elson, and D. Estrin, “Time Synchronization for Wireless Sensor Networks,” in Proceedings of the 15th International Parallel and Distributed Processing Symposium (IPDPS 2001), pp. 1965-1970, San Francisco, USA, Apr. 2001.
[20] J. Elson, L. Girod, and D. Estrin, “Fine-Grained Network Time Synchronization Using Reference Broadcasts,” in Proceedings of the 5th Symposium on Operating Systems Design and Implementation, pp. 147-163, Boston, USA, Dec. 2002.
[21] J. Elson, and K. Römer, “Wireless Sensor Networks: A New Regime for Time Synchronization,” ACM SIGCOMM Computer Communication Review, Vol. 33, No. 1, pp. 149-154, Jan. 2002.
[22] A. Galstyan, B. Krishnamachari, S. Pattem, and K. Lerman, “Distributed Online Localization in Sensor Networks Using a Moving Target,” in Proceedings of 3rd IEEE/ACM International Symposium on Information Processing in Sensor Networks (IPSN 2004), pp. 61-70, Berkeley, USA, Apr. 2004.
[23] S. Ganeriwal, R. Kumar, and M. Srivastava, “Timing-Sync Protocol for Sensor Networks,” in Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, pp. 138-149, Los Angeles, USA, Nov. 2003.
[24] J. V. Greunen and J. Rabaey, “Lightweight Time Synchronization for Sensor Networks,” in Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and Applications, pp. 11-19, San Diego, USA, Sep. 2003.
[25] S. Guha, R. Murty, and E. G. Sirer, “Sextant: A Unified Node and Event Localization Framework Using Non-Convex Constraints,” in Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2005), pp. 205-216, Urbana-Champaign, USA, May 2005.
[26] J.-S. Gutmann, and C. Schlegel, “AMOS: Comparison of Scan Matching Approaches for Self-localization in Indoor Environments,” in Proceedings of the 1st Euromicro Workshop on Advanced Mobile Robots, pp.61-67, Kaiserslautern, Germany, Oct. 1996.
[27] Z. J. Haas, “A New Routing Protocol for the Reconfigurable Wireless Networks,” in Proceedings of the 6th IEEE International Conference on Universal Personal Communications, pp. 562-566, San Diego, USA, Oct. 1997.
[28] J. E. Handschin, “Monte Carlo Techniques for Prediction and Filtering of Non-Linear Stochastic Processes,” Automatica, Vol. 6, pp. 555-563, 1970.
[29] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzher, ”Range-Free Localization Schemes for Large Scale Sensor Networks,” in Proceedings of Proceedings of 9th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom 2003), pp. 81-95, San Diego, USA, Sep. 2003.
[30] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Yan, L. Gu, G. Zhou, J. Hui, and B. Krogh, “Vigilnet: An Integrated Sensor Network System for Energy-efficient Surveillance,” ACM Transactions on Sensor Networks, Vol. 2, No. 1, pp. 1-38, Feb. 2006.
[31] T. He, J. A. Stankovic, C. Lu, and T. F. Abdelzaher, “SPEED: A Stateless Protocol for Real-Time Communication in Sensor Networks,” in Proceedings of the 23rd IEEE International Conference on Distributed Computing Systems (ICDCS ’03), pp. 46-55, Providence, USA, May 2003.
[32] L. Hu and D. Evans, “Localization for Mobile Sensor Networks,” in Proceedings of the 10th Annual International Conference on Mobile Computing and Networking (MobiCom 2004), pp. 45-57, Philadelphia, USA, Sep. 2004.
[33] Y. Hu, A. Perrig, and D. Johnson, “Packet Leashes: A Defense Against Wormhole Attacks in Wireless Ad Hoc Networks,” in Proceedings of the 22th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2003), pp. 1976-1986, San Francisco, USA, Mar. 2003.
[34] G. T. Huang, “Casting in Wireless Sensor Net,” Technology Review, pp.50-56, Jul. 2003.
[35] IEEE P802.15.4a/D4, “Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-rate Wireless Personal Area Networks (LRWPANs),” Jul. 2006.
[36] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Networks,” in Proceedings of 6th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom 2000), pp. 243-254, Boston, USA, Aug. 2000.
[37] C. D. Kidd , R. Orr , G. D. Abowd , C. G. Atkeson , I. A. Essa , B. MacIntyre , E. Mynatt , T. E. Starner and W. Newstetter, “The Aware Home: A Living Laboratory for Ubiquitous Computing Research, ” in Proceedings of 2nd International Workshop on Cooperative Buildings, pp. 191-198, Pittsburgh, USA, Oct. 1999.
[38] H. Kopetz, and W. Ochsenreiter, “Clock Synchronization in Distributed Real-Time Systems,” IEEE Transactions Computers, Vol. 36, No. 8, pp. 933-940, Aug. 1987.
[39] L. Lazos and R. Poovendran, “SeRLoc: Robust Localization for Wireless Sensor Networks,” ACM Transactions on Sensor Networks, Vol. 1, No. 1, pp. 73-100, Aug. 2005.
[40] J.-Y. Lee, and R. A. Scholtz, “Ranging in a Dense Multipath Environment Using an UWB Radio Link,” IEEE Journal of Selected Areas Communications, Vol. 20, No. 9, pp. 1677-1683, Dec. 2002.
[41] J. J. Leonard, and H. F. Durrant-Whyte, “Directed Sonar Sensing for Mobile Robot Navigation,” Kluwer Academic, Boston, USA, 1992.
[42] C. Liao, M. Maronosi, and D. Clark, “Experience with an Adaptive Globally-Synchronizing Clock Algorithm,” in Proceedings of the 11th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 106-114, Saint Malo, France, Jun. 1999.
[43] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler, “Wireless Sensor Networks for Habitat Monitoring,” in Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications, pp. 88-97, Atlanta, USA, Sep. 2004.
[44] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The Flooding Time Synchronization Protocol,” in Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 39-49, Baltimore, USA, Nov. 2004.
[45] M. H. T. Martins, H. Chen, and K. Sezaki “OTMCL: Orientation Tracking-based Monte Carlo Localization for Mobile Sensor Networks,” in Proceedings of the 6th Annual International Conference on Networked Sensing Systems (INSS2009), pp. 1-8, Pittsburgh, USA, Jun. 2009.
[46] D. Nicolescu and B. Nath, “Ad-Hoc Positioning Systems (APS),” in Proceedings of the 2001 IEEE Global Telecommunications Conference (GLOBECOM 2001), pp. 1734-1743, San Antonio, USA, Nov. 2001.
[47] D. Niculescu and B. Nath, “Ad hoc Positioning System (APS) using AOA,” in Proceedings of the 22th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2003), pp. 1734-1743, San Francisco, USA, Mar. 2003.
[48] M.-A. Pallas, and G. Jourdain, “Active High Resolution Time Delay Estimation for Large BT Signals,” IEEE Transactions on Signal Processing, Vol. 39, No. 4, pp. 781-788, Apr. 1991.
[49] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket Location-support System,” in Proceedings of 6th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom 2000), pp. 32-43, Boston, USA, Aug. 2000.
[50] T. S. Rappaport, “Wireless Communication: Principles & Practice,” Prentice Hall, New Jersey, 2001.
[51] T. Rappaport, J. Reed, and B. Woerner, “Position Location Using Wireless Communications on Highways of the Future,” IEEE Communications Magazine, Vol. 34 No. 10, pp. 33-41, Oct. 1996.
[52] G. Resta and P. Santi, “An Analysis of the Nodal Spatial Distributed of the Random Waypoint Mobility Model for Ad Hoc Networks,” in Proceedings of the 2nd ACM International Workshop on Principles of Mobile Computing, pp. 44-50, Toulouse, France, Oct. 2002.
[53] K. Römer, “Time Synchronization in Ad Hoc Networks,” in Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’01), pp. 173-182, Long Beach, USA, Oct. 2001.
[54] E. M. Royer, P. M. Melliar-Smith, and L. E. Moser, “An Analysis of the Optimum Node Density for Ad hoc Mobile Networks,” in Proceeding of the 2001 IEEE International Conference on Communications (ICC), Vol. 3, pp. 857-861, Helsinki, Finland, Jun. 2001.
[55] M. Rudafshani and S. Datta, “Localization in Wireless Sensor Networks,” in Proceedings of the 6th International Conference on Information Processing in Sensor Networks (IPSN 2007), pp. 51-60, Cambridge, USA, Apr. 2007.
[56] J.-P. Sheu, C.-M. Chao, W.-K. Hu, and C.-W. Sun, "A Clock Synchronization Algorithm for Multihop Wireless Ad Hoc Networks," Wireless Personal Communications, Vol. 43, No. 2, pp. 185-200, Oct. 2007.
[57] J.-P. Sheu, P.-C. Chen, and C.-S. Hsu, “A Distributed Localization Scheme for Wireless Sensor Networks with Improved Grid-Scan and Vector-based Refinement,” IEEE Transaction on Mobile Computing, Vol. 7, No. 9, pp. 1110-1123, Sep. 2008.
[58] J.-P. Sheu, and M.-L. Ding, “Routing with Hexagonal Virtual Coordinates in Wireless Sensor Networks,” in Proceedings of the 2007 IEEE Wireless Communications and Networking Conference (WCNC2007). pp. 2929-2934, Hong Kong, China, Mar. 2007.
[59] J.-P. Sheu, J.-M. Li, and C.-S. Hsu, “A Distributed Location Estimating Algorithm for Wireless Sensor Networks,” in Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC 2006), pp. 218-225, Taichung, Taiwan, Jun. 2006.
[60] M. L. Sichitiu and V. Ramadurai, “Localization of Wireless Sensor networks with a Mobile Beacon,” in Proceedings of the 1st IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2004), pp. 174-183, Fort Lauderdale, USA, Oct. 2004.
[61] M. L. Sichitiu and C. Veerarittiphan, “Simple, Accurate Time Synchronization for Wireless Sensor Networks,” in Proceedings of the 2003 IEEE Wireless Communications and Networking, pp. 1266-1273, New Orleans, USA, Mar. 2003.
[62] J. So, N. Vaidya, “MTSF: A Timing Synchronization Protocol to Support Synchronous Operations in Multihop Wireless Networks,” UIUC Technical Report, Oct. 2004.
[63] M. Srivastava, R. Muntz, and M. Potkonjak, “Smart kindergarten: Sensor-based Wireless Networks for Smart Developmental Problem-solving Environments,” in Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, pp 132-138, Rome, Italy, Jul. 2001.
[64] K.-F. Ssu, C.-H. Ou, and H. C. Jiau, “Localization with Mobile Anchor Points in Wireless Sensor Networks,” IEEE Transactions on Vehicular Technology, Vol. 54, No. 3, pp. 1187-1197, May 2005.
[65] P. Su, “Delay Measurement Time Synchronization for Wireless Sensor Networks,” Intel Research Berkeley Lab, IRB-TR-03-013, Jun. 2003.
[66] R. Szewczyk, E. Osterweil, J. Polastre, and M. Hamilton, A. Mainwaring, and D. Estrin, “Habitat Monitoring with Sensor Networks,” Communications of the ACM, Vol. 47, No. 6, pp. 34-40, Jun. 2004.
[67] V. Vivekanandan and V. W. S. Wong, “Concentric Anchor Beacon Localization Algorithm for Wireless Sensor Networks,” IEEE Transactions on Vehicular Technology, Vol. 56, No. 2, pp. 2733-2744, Sep. 2007.
[68] A. Ward, A. Jones, and A. Hopper, “A New Location Technique for the Active Office,” IEEE Personal Communications, Vol.4, No.5, pp.42-47, Oct.1997.
[69] B. H. Wellenhoff, H. Lichtenegger, and J. Collins, “Global Positions System: Theory and Practice”, Fourth Edition, Springer Verlag, 1997.
[70] K. Whitehouse and D. Culler. “Calibration as Parameter Estimation in Sensor Networks,” in Proceedings of the 1st ACM International Workshop on Sensor Networks and Applications (WSNA), pp.59-67, Atlanta, USA, Sept. 2002.
[71] Y. Xu, J. Winter, and W.-C. Lee, “Prediction-based Strategies for Energy Saving in Object Tracking Sensor Networks,” in Proceedings of the 2004 IEEE International Conference on Mobile Data Management, pp. 346-357, Berkeley, USA, Jun. 2004.
[72] J. Yi, S. Yang, and H. Cha, “Multi-hop-based Monte Carlo Localization for Mobile Sensor Networks,” in Proceedings of the 3th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON 2007), pp. 162-171, San Diego, USA, Jun. 2007.
[73] Z. You, M. Q. H. Meng, H. Liang, S. Li, Y. Li, W. Chen, Y. Zhou, S. Miao, K. Jiang and Q. Guo, “A Localization Algorithm in Wireless Sensor Networks Using a Mobile Beacon Node,” in Proceedings of the 2007 International Conference on Information Acquisition, pp. 420-426, Jeju City, Korea, Jul. 2007.
[74] S. Zhang, J. Cao, L. Chen, and D. Chen, “Locating Nodes in Mobile Sensor Networks More Accurately and Faster,” in Proceedings of 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON 2008), pp.37-45, San Francisco, USA, Jun. 2008
[75] D. Zhou, T.H. Lai, “A Scalable and Adaptive Clock Synchronization Protocol for IEEE 802.11-Based Multihop Ad Hoc Networks,” in Proceedings of the 2nd IEEE International Conference on Mobile Ad Hoc and Sensor Systems, pp. 551-558, Washington, USA, Nov. 2005.
[76] http://robotics.eecs.berkeley.edu/~pister/SmartDust/
[77] http://webs.cs.berkeley.edu/nest-index.html
[78] http://research.cens.ucla.edu/
[79] http://www.cs.virginia.edu/wsn/medical
指導教授 許健平(Jang-Ping Sheu) 審核日期 2010-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明