博碩士論文 91522082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.136.25.249
姓名 林金泉(Jin-Quan Lin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 人類跌倒之行為分析與偵測
(The Behavior Analysis and Detection of Falling)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 一個以膚色為基礎之互補人臉偵測策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在過去數十年裡,大部分的視訊監控系統的運作主要依賴人為的操作,這些系統大都使用閉路電視系統,其主要功能只是消極的錄影存證,並不能主動地提供偵測資訊,然而隨著數位化影音技術的進步,資料儲存設備之價格降低,光學攝影器材的普及和人工智慧技術的日趨成熟,使得智慧型視訊監控系統的發展更為快速且完善,尤其是其自動化與節省人力的優點,更是讓全世界各國重視的發展課題。
  本論文主要的目的在於提出一個以人類為目標的視訊監控系統,此系統能偵測、追蹤與判斷移動物的行為狀態,為了達到這個目的,我們首先利用背景相減法來擷取出可能移動物的位置,並配合一些影像處理技術與陰影去除的方法來過濾不可能的目標物,一旦目標擷取出來,我們以目標物的大小、顏色和位移等資訊來追蹤物體。最後為了判斷目標物我們引入了高斯混合模型來表示目標物行為的各種狀態,利用此模式我們可以有效地判斷與辨識目標物的各種行為狀態,最後我們以室內環境的人類移動和跌倒行為的影像,來進行系統的實驗,以驗證該系統是可靠且有效的。
摘要(英) In the past decades, most of surveillance systems used infrared rays, radar rays, or microwaves to detect and identify moving targets from monitoring environments, such as airports, station, banks, and restaurants, by manual manner. However, a lot of attentions have been paid to the developing of automatic and intelligent surveillance systems due to the rapid developments of computer and video techniques to monitor your home or your living environments. Intelligent surveillance system can automatically detect, track, and analyze moving objects, including the behaviors of objects and the occurring of unsafe events, and then send warnings message to people without involving any manual efforts.
The main purpose of this thesis is to present a video surveillance system to detect, track, and analyze human behaviors. First of all, we use the technique of background subtraction to detect different moving objects from video sequences. Then, two key features, i.e., object sizes and colors are utilized to track each detected object and its actions. After that, we introduce the theory of Gaussian Mixture Models (GMM) to model the behaviors of objects. According to the parameters of the models, different object behaviors like running, walking, and falling can be successfully recognized and analyzed. Experimental results show that the proposed method offers great improvements in terms of accuracy, robustness, and stability in the analysis of object behaviors.
關鍵字(中) ★ 行為分析 關鍵字(英) ★ surveillance
論文目次 第一章 緒論…………………………………………………………………………1
1.1 研究動機……………………………………………………………………1
1.2 相關研究……………………………………………………………………2
1.3 系統流程……………………………………………………………………4
1.4 論文架構……………………………………………………………………7
第二章 前景目標物偵測與追蹤…………………………………………………… 9
2.1 目標物偵測 ………………………………………………………………10
2.2 目標物追蹤 ………………………………………………………………13
2.3 陰影問題 …………………………………………………………………17
第三章 行為分析與分類……………………………………………………………20
3.1 特徵抽取…………………………………………………………………21
3.2 高斯混合模型……………………………………………………………22
3.2.1 模型的敘述………………………………………………………23
3.2.2 模型的訓練………………………………………………………24
3.3 行為辨識…………………………………………………………………25
第四章 實驗結果…………………………………………………………………27
4.1 視訊監控…………………………………………………………………28
4.2 跌倒偵測…………………………………………………………………32
第五章 結論與未來工作…………………………………………………………37
5.1 結論………………………………………………………………………37
5.2 未來工作…………………………………………………………………38
參考文獻……………………………………………………………………………39
參考文獻 [1] Wren C. R., Azarbayejani A., Darrell T. and Pentland A. P., “Pfinder: Real-Time Tracking of the Human Body”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 780-785, July 1997.
[2] Haritaoglu I., Harwood D. and Davis L. S., “W4: Real-Time Surveillance of People and Their Activities”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 8, pp. 809-830, Aug 2000.
[3] T. Olson and F. Brill, “Moving Object Detection and Event Recognition Algorithms for Smart Cameras”, In proc. DARPA Image Understanding Workshop, pp. 159-175, May 1997.
[4] R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt and L. Wixson, “A System for Video Surveillance and Monitoring”, Tech. Rep., The Robotics Institute, Carnegie Mellon University, 2000. CMU-RI-TR-00-12.
[5] H. Sidenbladh and M. J. Black, “Learning the statistics of people in images and video”, International Journal of Computer Vision. Vol. 54, Issue 1-3, pp. 183-209, Aug.-Oct. 2003.
[6] Haritaoglu, D. Harwood, and L. Davis, “Active Tracker: Surveillance with Active Camera”, http://www.umiacs.umd.edu/users/hismail/ActiveTracker_Outline.htm
[7] C. Anderson, Peter Burt and G. van der Wal, “Change detection and tracking using pyramid transformation techniques”, In Proceedings of SPIE - Intelligent Robots and Computer Vision, Vol. 579, pp. 72-78, 1985.
[8] Beynon M. D., Van Hook D. J., Seibert M., Peacock A.and Dudgeon D., “Detecting Abandoned Packages in a Multi-camera Video Surveillance System”, In Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 221-228 ,July 2003.
[9] Teknomo K., Takeyama Y. and Inamura H., “Frame-Based Tracing of Multiple Objects”, In Proceedings of 2001 IEEE Workshop, pp. 11-18, July 2001.
[10] P. Dempster, N. M. Laird and D. B. Rubin, “Maximum Likelihood from Incomplete Data via the EM Algorithm”, Journal of the Royal Statistical Society. Series B (Methodological), Vol. 39, No. 1, pp. 1-38, 1977.
指導教授 范國清(Kuo-Chin Fan) 審核日期 2004-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明