博碩士論文 91522083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.144.96.108
姓名 黃振家(Chen-Chia Huang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 預測訊息核醣核酸剪接中保留序列子之整合性系統
(An Integrated System to Identify Conserved Sequence Elements Associated with mRNA Splicing)
相關論文
★ 應用嵌入式系統於呼吸肌肉群訓練儀之系統開發★ 勃起障礙與缺血性心臟病的雙向研究: 以台灣全人口基礎的世代研究
★ 基質輔助雷射脫附飛行時間式串聯質譜儀 微生物抗藥性資料視覺化工具★ 使用穿戴式裝置分析心律變異及偵測心律不整之應用程式
★ 建立一個自動化分析系統用來分析任何兩種疾病之間的關聯性透過世代研究設計以及使用承保抽樣歸人檔★ 青光眼病患併發糖尿病,使用Metformin及Sulfonylurea治療得到中風之風險:以台灣人口為基礎的觀察性研究
★ 利用組成識別和序列及空間特性構成之預測系統來針對蛋白質交互作用上的特殊區段點位進行分析及預測辨識★ 新聞語意特徵擷取流程設計與股價變化關聯性分析
★ 藥物與疾病關聯性自動化分析平台設計與實作★ 建立財務報告自動分析系統進行股價預測
★ 建立一個分析疾病與癌症關聯性的自動化系統★ 基於慣性感測器虛擬鍵盤之設計與實作
★ 一個醫療照護監測系統之實作★ 應用手機開發手握球握力及相關資料之量測
★ 利用關聯分析全面性的搜索癌症關聯疾病★ 全面性尋找類風濕性關節炎之關聯疾病
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 替代性剪接 (Alternative splicing) 是真核生物的基因表現過程中一種重要的現象,使得一個基因能有多種表現的產物,即蛋白質 (Protein),而這個現象目前正引吸引許多生物學家積極地投入研究當中。蛋白質序列、訊息核醣核酸和表現序列標幟序列提供了關於基因的替代性剪接相關有用資訊。
本論文主要的貢獻為設計一分析平台,透過電腦運算分析的方式,可以大量地分析所有人類基因,萃取出含有替代性剪接資訊的基因,並綜合基因表現資料、功能資訊、以及跨物種基因的比較,運用統計(Statistics)和資料探勘 (Data mining)的方式,整理並找尋mRNA上的具功能的區塊(Functional sites),供生物學家驗證。
我們定義替代性剪接(Alternative splicing)的型態 (Types),並設計一套演算法 (Algorithm),萃取替代性剪接資訊,並將這些資訊,儲存成資料庫。此外,人類基因表現資訊及基因功能資訊也可以幫助替代性剪接(Alternative splicing)的分析。我們將基因,依據tissue-specificity和 Function做分類,綜合SpliceMotif 資料庫來進行Motif 的預測。我們應用DNA Motif預測的工具於已搜集好的SpliceMotif資料庫,並找出與替代性剪接相關連的 motif,稱SpliceMotif。透過實際案例探討,我們證明本論文所研究的工具,可以發現Exonic Splicing Enhancer (ESE)於所挑選的基因中。
摘要(英) Generally speaking, in eukaryotes, alternative splicing (AS) mechanism for pre-mRNA plays an important role to generate multiple isoforms. In this thesis, we propose an integrated approach to automatically identify the conserved sequences in selected exon/intron regions of a gene group. Firstly, the alternative splicing database, namely ProSplicer, is constructed in our previously research and used in the system. Secondly, several alternative splicing types such as exon skipping, alternative 5’ splicing sites, alternative 3’ splicing sites and mutually exclusive exons are derived and extracted from evidence data. Finally, for each type of alternative splicing, the flanking intronic sequences are collected and then used for motif discovery tools. Alternative splicing related conserved motif, namely SpliceMotif, are computationally detected. The tissue-specific information and gene functionalities corresponding to the selected regions are also taken into account. The main contribution of this work is to establish an integrated platform for detecting conserved sequences within exon/intron regions of particular alternative splicing type, e.g., exon skipping. After several case studies for experimenting the proposed system, the system can detect the known functional sites, which are experimentally verified, related alternative splicing modes, e.g., exonic splicing enhancer (ESE).
關鍵字(中) ★ 資料庫
★ 替代性剪接
★ 剪接
關鍵字(英) ★ alternative splicing
★ database
★ splicing
論文目次 Chapter 1 Introduction 1
1.1 Background 1
1.1.1 The Central Dogma 1
1.1.2 Pre-mRNA Splicing 2
1.1.3 Alternative Splicing 3
1.1.4 Splice Site 5
1.1.5 Alternative Splicing Modes 6
1.1.6 SR Protein Involving in ESE-dependent Splicing 6
1.2 Motivation 8
1.3 Biological Significance 9
1.4 The Specific Aim 10
Chapter 2 Related Works 11
2.1 Alternative Splicing Databases 11
2.2 Splicing Site Databases 17
2.3 Conserved Sequence Analysis 17
Chapter 3 Materials and Method 19
3.1 Materials 19
3.2 Overview of SpliceMotif 29
3.3 System Flow 30
3.4 Preprocessing 31
3.4.1 Logical Operations 31
3.4.2 Definitions of Alternative Splicing Modes 32
3.4.3 Filtering Features 32
3.5 Motif Discovery 35
3.5.1 Selected Regions and Flanking Regions 35
3.5.2 Motif Discovery Tools 35
3.5.3 Sequence Logos 38
3.5.4 Converting Motifs Into Profile Hidden Markov Models (HMM) 38
3.5.5 RNA Secondary Structure Prediction 39
3.6 Motif Display 39
3.7 Scanning for Motif Instances 40
Chapter 4 Results 42
4.1 Database System 42
4.2 Web Interfaces 45
4.2.1 Overview of Web Interfaces 45
4.2.2 Motif Discovery 45
4.2.3 Motif Display 52
4.2.4 Motif Search 56
4.3 Case Studies 58
4.3.1 An Alternative Spliced Gene ( BRCA1 ) 58
4.3.2 A Variety of Genes Which Has ESEs 59
4.3.3 Conserved Exon Skipping between Human and Mouse 60
4.4 Summary of Result 62
Chapter 5 Discussions 63
5.1 Limitations of SpliceMotif 63
5.2 Comparison to Other Tools 63
5.3 Future Works 64
Chapter 6 Conclusions 65
References 66
參考文獻 1. Cartegni, L., S.L. Chew, and A.R. Krainer, Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet, 2002. 3(4): p. 285-98.
2. Murakami, T., et al., Identification and characterization of two splice variants of human diacylglycerol kinase eta. J Biol Chem, 2003. 278(36): p. 34364-72.
3. Huang, H.D., et al., ProSplicer: a database of putative alternative splicing information derived from protein, mRNA and expressed sequence tag sequence data. Genome Biol, 2003. 4(4): p. R29.
4. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-10.
5. Florea, L., et al., A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res, 1998. 8(9): p. 967-74.
6. Thanaraj, T.A., et al., ASD: the Alternative Splicing Database. Nucleic Acids Res, 2004. 32(1): p. D64-9.
7. Lee, C., et al., ASAP: the Alternative Splicing Annotation Project. Nucleic Acids Res, 2003. 31(1): p. 101-5.
8. Modrek, B., et al., Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res, 2001. 29(13): p. 2850-9.
9. Dralyuk, I., et al., ASDB: database of alternatively spliced genes. Nucleic Acids Res, 2000. 28(1): p. 296-7.
10. Gelfand, M.S., et al., ASDB: database of alternatively spliced genes. Nucleic Acids Res, 1999. 27(1): p. 301-2.
11. Croft, L., et al., ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome. Nat Genet, 2000. 24(4): p. 340-1.
12. Huang, Y.H., et al., PALS db: Putative Alternative Splicing database. Nucleic Acids Res, 2002. 30(1): p. 186-90.
13. Krause, A., et al., SYSTERS, GeneNest, SpliceNest: exploring sequence space from genome to protein. Nucleic Acids Res, 2002. 30(1): p. 299-300.
14. Burset, M., I.A. Seledtsov, and V.V. Solovyev, SpliceDB: database of canonical and non-canonical mammalian splice sites. Nucleic Acids Res, 2001. 29(1): p. 255-9.
15. Miriami, E., H. Margalit, and R. Sperling, Conserved sequence elements associated with exon skipping. Nucleic Acids Res, 2003. 31(7): p. 1974-83.
16. Cartegni, L., et al., ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res, 2003. 31(13): p. 3568-71.
17. Birney, E., et al., Ensembl 2004. Nucleic Acids Res, 2004. 32 Database issue: p. D468-70.
18. Wheeler, D.L., et al., Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res, 2004. 32 Database issue: p. D35-40.
19. Apweiler, R., et al., UniProt: the Universal Protein knowledgebase. Nucleic Acids Res, 2004. 32 Database issue: p. D115-9.
20. Mulder, N.J., et al., The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res, 2003. 31(1): p. 315-8.
21. Harris, M.A., et al., The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res, 2004. 32 Database issue: p. D258-61.
22. Boeckmann, B., et al., The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res, 2003. 31(1): p. 365-70.
23. Lawrence, C.E., et al., Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science, 1993. 262(5131): p. 208-14.
24. Bailey, T.L. and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in biopolymers, in Proc Int Conf Intell Syst Mol Biol. 1994. p. 28-36.
25. Hughes, J.D., et al., Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae, in J Mol Biol. 2000. p. 1205-14.
26. Eddy, S.R., Profile hidden Markov models. Bioinformatics, 1998. 14(9): p. 755-63.
27. Mathews, D.H., et al., Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol, 1999. 288(5): p. 911-40.
28. Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 2003. 31(13): p. 3406-15.
29. Zuker, M. and A.B. Jacobson, Using reliability information to annotate RNA secondary structures. Rna, 1998. 4(6): p. 669-79.
30. Crooks, G.E., et al., WebLogo: A Sequence Logo Generator. Genome Res, 2004. 14(6): p. 1188-90.
31. Schneider, T.D. and R.M. Stephens, Sequence logos: a new way to display consensus sequences. Nucleic Acids Res, 1990. 18(20): p. 6097-100.
32. Liu, S. and R.B. Altman, Large scale study of protein domain distribution in the context of alternative splicing. Nucleic Acids Res, 2003. 31(16): p. 4828-35.
33. Orban, T.I. and E. Olah, Emerging roles of BRCA1 alternative splicing. Mol Pathol, 2003. 56(4): p. 191-7.
34. Sorek, R. and G. Ast, Intronic sequences flanking alternatively spliced exons are conserved between human and mouse. Genome Res, 2003. 13(7): p. 1631-7.
指導教授 黃憲達、洪炯宗
(Hsien-Da Huang、Jorng-Tzong Horng)
審核日期 2004-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明