博碩士論文 92223052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.137.198.130
姓名 許閔雅(Min-Ya Hsu)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Protonation-Induced Control of Binding Strength, Orientation and Selectivity in Multiple Hydrogen-Bonded Systems.)
相關論文
★ 異參茚并苯和其相關衍生物的合成 與物理性質之研究★ Cycloiptycene分子之合成與自組裝行為之研究
★ 異参茚并苯衍生物合成與性質之研究★ 含五苯荑及異參茚并苯衍生物之合成與光物理行為之研究
★ 含胺基之二苯乙烯衍生物的分子內光誘導電子轉移之C-N斷鍵反應及激態錯合體之研究★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究
★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應
★ 含有Iptycene的 烷類雙硫醇分子的構形與金屬表面自我組合的結構★ 新型共軛高分子與含有皇冠醚的二苯乙烯發光團的合成與螢光感應之研究
★ 利用Pentiptycene及Calix[4]arene設計與合成新型之螢光感應器★ 含N-芳基取代對-二苯乙烯胺之合成與光化學性質之研究
★ Iptycene衍生物之分子與超分子晶體結構之研究★ Ⅰ.具N-苯環取代基之反式- 3 -二苯乙烯胺之合成與螢光性質之研究Ⅱ.具醯胺基與Pentiptycene之α,ω烷類雙硫醇化合物之合成
★ 取代基效應對反式-4-(N-苯基)二苯乙烯胺之光化學行為影響之研究★ 質型螢光離子感應與「取代基對等」 行為之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氫鍵是一個非常重要的非共價鍵之作用力,因為其具有方向性和適當的強度,所以在自然界、超分子化學、自我組裝、主客分子和分子辨識中被廣泛的使用。如果我們可以控制多重氫鍵的鍵結能力,就可以間接改變超分子的型態。
我們設計一個三元件系統—包含一反應中心、共軛架橋和可以形成多重氫鍵的鍵結中心,藉由在反應中心進行質子化反應之方式,將訊號經由共軛架橋傳到鍵結中心(主分子),間接改變與客分子間的氫鍵鍵結能力。我們成功地藉由質子化方式控制多重氫鍵的鍵結強度、鍵結方式和鍵結選擇性。在複合物為AAA・・・DDD(A表氫鍵之質子受基,D表質子供給基;AAA表示分子內有三個質子受基、DDD表示分子內有三個質子供給基,餘類推)之系統中,我們藉由質子化方式使氫鍵鍵結強度強烈減少;在複合物為AAA・・・DDD和ADA・・・DAD之系統中,我們藉由質子化方式使鍵結方式改變;在複合物為ADAD・・・DADA之系統中,我們藉由質子化方式讓複合物有專一的選擇性。透過以上系統之研究,我們也歸納出一些分子設計之原則,以利多重氫鍵系統之控制。
摘要(英) Hydrogen bonding is one of the most important non-covalent interactions found in nature, supramolecular chemistry, self-assembly, host-guest complexes and molecular recognition, and is widely used in molecular design because hydrogen bonds are directional and moderately strong. If we can control the binding affinity in multiply hydrogen-bonded complexes, we can change the morphology of supramolecules.
We have studied a three-component system consisting of a reaction center, a conjugated bridge and a binding center with multiple hydrogen-bonding sites. Protonation of the reaction center induces intramolecular charge transfer to the binding center via the conjugated bridge, altering the ability of the three-component system to bind with a partner. We have succeeded in controlling the binding strength, orientation and selectivity in various systems by protonation. The binding energy decreases when the AAA system is protonated (A stands for a proton acceptor in a hydrogen-bonded pair and D stands for a proton donor. An AAA system means the binding center has three acceptor sites). The binding orientation changes when the ADA・・・DAD and AAA・・・DDD systems are protonated. The binding selectivity can be optimized by protonation in the DADA system. We also provides some ideas for chemists to design molecules whose hydrogen-bonding sites can be controlled.
關鍵字(中) ★ 多重氫鍵
★ 超分子化學
★ 自我組裝
★ 主客分子
★ 分子辨識
關鍵字(英) ★ self-assembly
★ supramolecular chemistry
★ multiply hydrogen-bonded complexes
★ host-guest complexes and molecular recognition
論文目次 中文摘要 ..................................І
英文摘要 ..................................Ⅱ
謝誌 ......................................Ⅳ
表目錄 ....................................Ⅵ
圖目錄 ....................................Ⅷ
示意圖表 ..................................XI
第一章 序論 ………………………………………………………………1
第二章 理論計算方法 ……………………………………………………19
2-1 Basis Set Superposition Error(BSSE)基底重疊誤差修正法
2-2 Molecular Electrostatic Potentials,MEP(分子靜電位能)之理論介紹
第三章 結果與討論 ………………………………………………………22
3-0.1 命名方式
3-0.2 理論計算所使用的理論層次(theory level)和基底函數(basis set)
3-1 能形成三重氫鍵系統的ADA分子 ……………………………………25
3-2 能形成四重氫鍵系統中自我互補形式的DADA分子 …………………48
3-3 能形成三重氫鍵之AAA分子 …………………………………………66
第四章 總結 ………………………………………………………………91
參考資料 ……………………………………………………………………94
附錄A…………………………………………………………………………100
附錄B…………………………………………………………………………117
附錄C…………………………………………………………………………121
參考文獻 [1].(a) Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer-Verlag: New York, 1991. (b) Pauling, L. The Nature of the Chemical Bond; Cornell Univ Press: San Francisca, 1960.
[2].(a) Balzani V.; Cola L. D. Supramolecular Chemistry; Kluwer Academic Publishers: Boston, 1992. (b) Weber E. Supramolecular Chemistry Ι ­ Directed Synthesis and Molecular Recognition; Springer-Verlag: Berlin, 1993. (c) Comprehensive Supramolecular Chemistry, Lehn, J.-M., Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vogtlw, F., Eds.; Elsevier Science: Qxford, 1996. (d) Schneider, H.-J.; Tatsimirsky, A. Principles and Methods in Supramolecular Chemistry; Wiley: New Park, 2000. (e) Bosman, A. W.; Brunsveld, L.; Folmer, B. J. B.; Sijbesma, R. P.; Meijer, E. W. Macromol. Symp. 2003, 201, 143.
[3].(a) Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N. Nature, 1962, 195, 68. (b) Rebek, J.; Nemeth, D. J. Am. Chem. Soc. 1985, 107, 6738. (c) Zimmerman, S. C.; Wu, W. J. Am. Chem. Soc. 1989, 111, 4994. (d) Ogoshi, H.; Hatakeyama, H.; Kotani, J.; Kawashima, A.; Kuroda, Y. J. Am. Chem. Soc. 1991, 113, 8181. (e) Kelly-Rowley, A. M.; Cabell, L. A.; Anslyn, E. V. J. Am. Chem. Soc. 1991, 113, 9687.
[4].(a) Fluorescent Chemosensor For Ion and Molecule Recognition; Czarnik, A. W., Ed.; ACS: Washington, DC, 1992. (b) Kolbel, M.; Menger, F. M. Langmuir 2001, 17, 4490. (c) Ren, J.; Qu, X.; Dattagupta, N.; Chaires, J. B. J. Am. Chem. Soc. 2001, 123, 6742. (d) Banerjee, I. A.; Yu, L.; Matsui, H. J. Am. Chem. Soc. 2003, 125, 9542. (e) Chou, H.-C.; Hsu, C.-H.; Cheng, Y.-M.; Cheng, C.-C.; Liu, H.-W.; Pu, S.-C.; Chou, P.-T. J. Am. Chem. Soc. 2004, 126, 1650.
[5].(a) Kotera, M.; Lehn, J.-M.; Vigneron, J.-P. J. Chem. Soc., Chem. Commun. 1994, 197. (b) Lindoy, L. F.; Atkinson, I. M. Self-Assembly in Supramolecular Systems; The Royal Society of Chemistry: Cambridge, 2000. (b) Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem Int. Ed. 2001, 40, 2382; Angew. Chem. 2001, 113, 2446.
[6].Jeffrey, G. A. An introduction to hydrogen bonding, Oxford University Press: Oxford, 1997.
[7].Leach, A. R. Molecular Modelling Principles and Applications, Prentice Hall: London, 2001.
[8].Zeng, H.; Miller, R. S.; Flowers, R. A.; Gong, B. J. Am. Chem. Soc. 2000, 122, 2635.
[9].(a) Jorgensen, W. L.; Pranata, J. J. Am. Chem. Soc. 1990, 112, 2008. (b) Pranata, J.; Wierschke, S. G.; Jorgensen, W. L.; J. Am. Chem. Soc. 1991, 113, 2810.
[10].Sartorius, J.; Schneider, H. -J. Chem. Eur. J. 1996, 2, 1446.
[11](c) Sherrington, D. C.; Taskinen, K. A. Chem. Soc. Rev. 2001, 30, 83.
[12].Kerckhoffs, J. M. C. A.; van Leeuwen, F. W. B.; Spek, A. L.; Kooijman, H.; Calama, M. C.; Reinhoudt, D. N. Angew. Chem Int. Ed. 2003, 42, 5717.
[13].Lehn, J.-M.; Mascal, M.; DeCian, A.; Fischer, J. J. Chem. Soc., Perkin Trans. 2 1992, 461.
[14].Ma, Y.; Kolotuchin, S. V.; Zimmerman, S. C. J. Am. Chem. Soc. 2002, 124, 13757.
[15].Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Nature, 2000, 407, 167.
[16].Söntjens, S. H. M.; Sijbesma, R. P.; van Genderen, M. H. P.; Meijer, E. W. J. Am. Chem. Soc. 2000, 122, 7487.
[17].Stone, A. J. The Theory of Intermolecular Forces, Clarendon: Oxford, 1996, pp 115-119.
[18].Cooke, G.; Rotello, V. M. Chem. Soc. Rev. 2002, 31, 275.
[19].(a) Chao, I.; Hwang, T. -S. Angew. Chem. 2001, 113, 2775; Angew. Chem. Int. Ed. 2001, 40, 2703. (b) Hwang, T. -S.; Juan, N.; Chen, H.-Y.; Chen, C.-C.; Lo, S.-J.; Chao, I. Chem. Eur. J. 2004, 10, 1616. (c) Lo, S.-J.; Li, W.-S.; Chen, H.-Y.; Chao, I. Chem. Eur. J. 2005, in press.
[20].(a) Breinlinger, E.; Niemz, A.; Rotello, V. M. J. Am. Chem. Soc. 1995, 117, 5379. (b) Ge, Y.; Lilienthal, R. R.; Smith, D. K. J. Am. Chem. Soc.1996, 118, 3976. (c) Kajiki, T.; Moriya, H.; Kondo, S.; Nabeshima, T.; Yano, Y. Chem.Commun. 1998, 2727. (d) Kaifer, A. E. Acc. Chem. Res. 1999, 32, 62. (e) Ge, Y.; Miller, L.; Ouimet, T.; Smith, D. K. J. Org. Chem. 2000, 65, 8831. (f) Tucker, J. H. R.; Collinson, S. Chem. Soc. Rev. 2002, 31, 147.
[21].(a) Inouye, M.; Konishi, T.; Isagawa, K. J. Am. Chem. Soc. 1993, 115, 8091. (b) Al-Saya, M. H.; Branda, N. R. Angew. Chem., Int. Ed. 2000, 39, 945.
[22].(a) Chen, C. T.; Siegel, J. S. J. Am. Chem. Soc. 1994, 116, 5959. (b) Deans, R.; Cooke, G.; Rotello, V. M. J. Org. Chem.1997, 62, 836. (c) Deans, R.; Cuello, A. O.; Galow, T. H.; Ober, M.; Rotello, V. M. J. Chem. Soc.,Perkin Trans.2 2000, 1309.
[23].Söntjens, S. H. M.; Meijer, J. T.; Kooijman, H.; Spek, A. L.; van Genderen, M. H. P.; Sijbesma, R. P.; Meijer, E. W. Org. Lett. 2001, 24, 3881.
[24].Sijbesma, R. P.; Meijer, E. W. Chem.Commun. 2003, 5.
[25].(a) Murray, T. J.; Zimmerman, S. C. J. Am. Chem. Soc. 1992, 57, 4010. (b) Zimmerman, S. C.; Murray, T. J. Philos. Trans. R. Soc. London, Ser. A 1993, 345:1674, 49.
[26].(a) Lee, C.; Fitzgerald, G.; Planas, M.; Novoa, J. J. J. Phys. Chem. 1996, 100, 7398. (b) Lee, C.; Sosa, C.; Planas, M.; Novoa, J. J. J. Chem. Phys. 1996, 104, 7081. (c) Gonzalez, L.; Mo, O.; Yañez, M.; Elguero, J. J. Mol. Struct. 1996, 371, 1. (d) Alfredsson, M.; Ojanäe, L.; Hermansson, K. G. Int. J. Quantum Chem. 1996, 60, 767. (e) Dkhissi, A.; Adamowicz, L.; Maes, G. J. Phys. Chem. A 2000, 104, 2112. (f) Rak, J.; Skurski, P.; Simons, J.; Gutowski, M. J. Am. Chem. Soc. 2001, 123, 11695. (g) Dabkowska, I.; Rak, J.; Gutowski, M. J. Phys. Chem. A 2002, 106, 7423.
[27].Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. Our BSSE calculation procedure is the same as in: Turi, L.; Dannenberg, J. J. J. Phys. Chem. 1993, 97, 7899.
[28].Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M .A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T. Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Morokuma, P. Y. Ayala. K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Challacombe, A. Nanayakkara. M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian 03, Revision A. 1, Gaussian, Inc., Pittsburgh PA, 2003.
[29].Poplitzer, P.; Truhlar, D. G. Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press: New Park, 1981.
[30].Murray, J. S.; Sen. K. Molecular Eletrostatic Potentials (Concepts and Applications), Amsterdam; New York: Elsevier, 1996.
[31].Pauling, L. The Nature of the Vhemical Bond, 3rd ed., Cornell University, Press, Ithaca: New York, 1960, pp.257-264
[32].Stowasser, R.; Hoffmann, R. J. Am. Chem. Soc. 1999, 121, 3414.
[33].Zhan, C.-G.; Nichols, J. A.; Dixon, A. A. J. Phys. Chem. A 2003, 107, 4184.
[34]. Bordner, A. J.; Cavasotto, C. N.; Abagyan, R. A. J. Phys. Chem. B. 2003, 107, 9601.
指導教授 趙奕姼、楊吉水
(Ito Chao、Jye-Shane Yang)
審核日期 2005-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明