博碩士論文 92226035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:286 、訪客IP:3.137.172.252
姓名 陳政憲(Cheng-Hsien Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 無畫素串音之體積全像光儲存碟片之研究
(The study of volume holographic optical disc without inter-pixel crosstalk)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們利用球面波位移技術與共軛光讀取架構結合體積全像的繞射特性,設計一高儲存容量與高傳輸速度的光學儲存系統。因為讀取光與參考光的相位不匹配,即讀取光微小位移將使得繞射強度快速地衰減,因此系統將發展出具有高儲存容量的特性。當此儲存系統之訊號輸入元件為一空間調制器,因此系統將擁有光學平行處理的能力,增加訊號的傳輸速度。另外,當碟片在布拉格不匹配條件下,我們能精準的控制且預測繞射光偏移之情形,甚至使得繞射光在觀察面上不偏移,而使得繞射光之畫素與畫素間之串音在此情況下為最小。
論文中以相位疊加法分析體積全像的繞射訊號,研究其繞射訊號特性與系統的位移容忍度,並分析畫素間之串音,並有效的控制串音,使其對系統之影響降為最低,並期能實現且解決體積全像儲存之困難。
關鍵字(中) ★ 相位疊加法
★ 體積全像
★ 光儲存
★ 串音
關鍵字(英) ★ holographic
★ storage
★ crosstalk
★ VOHIL
論文目次 摘要 I
目錄 II
圖索引 III
表索引 VI
第一章 緒論 1
1.1引言 1
1.2全像光學之發展 3
1.3 論文大綱 8
第二章 體積全像與其繞射效率 10
2.1光折變效應 11
2.2耦合理論法 18
2.2.1 布拉格定律 18
2.2.2 耦合波理論 22
2.3 相位疊加法 36
第三章 穿透式體積全像光儲存系統 40
3.1 系統架構 41
3.2 相位疊加法之模擬 43
3.2.1 取樣點的分佈與分析 46
3.3 體積全像之位移選擇性 52
3.4 繞射效率之歸一化 58
3.5 實驗架構 59
第四章 體積全像之光儲存碟片系統 61
4.1 體積全像光儲存碟片系統之位移選擇性 61
4.2 繞射光點移位之補償 69
4.3 補償後之體積全像光儲存碟片系統 77
4.4 近似解析解之推導與分析 84
4.5 布拉格不匹配下繞射光串音分析 91
4.6 實驗結果與模擬修正 96
第五章 空間調制器為訊號光之讀取特性 101
5.1 空間調制器之理論模型 101
5.2 空間調制器之空間特性與串音分析 107
5.2 結論 111
第六章 結論 113
參考資料 114
中英文名詞對照表 118
參考文獻 [1] J. W. Goodman, Introduction to Fourier Optics, 2nd edi. (McGraw-Hill, New York, 2002).
[2] H. Coufal and G. W. Burr, “Optical data storage,” Chapter 26, International Trends in Applied Optics, ed., A. Guenther, SPIE, 2002.
[3] P. J. van Heerden, “Theory of Optical Information Storage in Solids,” Appl. Opt. 2, 393-400 (1963).
[4] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, New York, 2000).
[5] J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM journal of research and development, 44, 341-368 (2000).
[6] D. Psaltis and F. Mok, “Holographic memories,” Scientic American, 70-76 (1995).
[7] J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540-542 (1971).
[8] F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79-81 (1972).
[9] D. L. Staebler, W. J. Burke,W. Philips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182-184 (1975).
[10] Gábor Mandulaa, Krisztián Lengyela, László Kovácsa*, Mostafa A. Ellabbanb, Romano A. Ruppb, and Martin Fallyb, “Thermal fixing of holographic gratings in nearly stoichiometric LiNbO3 crystals,” SPIE Proc. 4412, 226-230 (2001).
[11] D. von der Linde, A. M. Glass, and K. F. Rogers, “Multiphoton photorefractive process for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155-157 (1974).
[12] A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539-541 (2000).
[13] H.-C. Külich, “Reconstructing volume holograms without image field losses,” Appl. Opt. 30, 2850-2857 (1991).
[14] Hans-Christian Kűlich, and Eckhard Krätzig, “Reconstruction of volume holograms at different wavelengths,” SPIE 1273, 60-67 (1990).
[15] H. C. Kűlich, “A new approach to real volume holograms at different wavelengths,” Opt. Commun. 64, 407-411 (1987).
[16] D. Psaltis, F. Mok, and H.-Y. S. Li, “Nonvolatile storage in photorefractive crystal”, Opt. Lett. 19, 210-212 (1994).
[17] E. S. Bjornson, M. C. Bashaw, and L. Hesselink, “Digital quasi-phase-matched two-color nonvolatile holographic storage,” Appl. Opt. 36, 3090-3106 (1997).
[18] H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgankar, “Intensity dependence and white light gating of two color photorefractive gratings in LiNbO3,” Opt. Lett. 22, 1305-1307 (1997).
[19] Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two step recording in lithum niobate using CW Lasers,” Phys. Rev. Lett. 78, 2944-2947 (1997).
[20] Y. Tomita, S. Sunarno, and G. Zhang, “Ultraviolet-light-gating two-color photorefractive effect in Mg-doped near-stoichiometric LiNbO3,” J. Opt. Soc. Am. B. 21, 753-760 (2004).
[21] A. Winnacker, R. M. Macfarlane, Y. Furukawa, and K. Kitamura, “Two-color photorefractive effect in Mg-doped lithium niobate,” Appl. Opt. 41, 4891-4896 (2002).
[22] M. Haw, “The light fantastic,” Nature 422, 556-558 (2003).
[23] D. Gabor, “A new Microscopic principle,” Nature 161, 777-778 (1948).
[24] G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811-813 (1999).
[25] 吳啟守,“光折變體積全像術之波長多工於高密度分波多工器之應用,”中原大學應用物理研究所碩士論文,中華民國九十年。
[26] A. Chiou, P. Yeh, C. Yang, and C. Gu, “Photorefractive Coupler for Fault-Tolerant Coupling,” IEEE Photon. Techno. Lett. 7, 789 (1995).
[27] A. Chiou, P. Yeh, C. Yang, and C. Gu, “Photorefractive spatial mode converter for multimode-to-single-mode fiber-optic coupling,” Opt. Lett. 20, 1125 (1995).
[28] R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography, (Academic Press, New York, 1971).
[29] D. L. Staebler, W. Phillips, “Fe-Doped LiNbO3 for read-write applications,” Appl. Opt. 13, 788-794 (1974).
[30] S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451-453 (2000).
[31] M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic data storage media for practical systems,” InPhase Tech. whitepapers, 2003.
[32] C. C. Sun, Y. M. Chen, and W. C. Su, “An all-optical fiber sensing system based on random phase encoding and volume holographic interconnection,” Opt. Eng, Lett. 40, 160 (2001).
[33] Asthana and B. Finkelstein, “Superdense optical storage system,” IEEE Spectrum 32, 25-31 (1995).
[34] F. H. Mok, M. C. Tackitt, and H. M. Stoll, “Storage of 500 High-resolution holograms in LiNbO3 crystal,” Opt. Lett. 16, 605 (1991).
[35] C. C. Sun, C. Y. Hsu, Y. O. Yang, W. C. Su, and A. E. T. Chiou, “All-optical angular sensing based on holography multiplexing with spherical waves,” Opt. Eng. 41, 2809-2813 (2002).
[36] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume hologram,” Opt. Lett. 17, 1471-1473 (1992).
[37] W. C. Su, Y. W. Chen, C. C. Sun, and Y. Ouyang, “Multi-layer storage of a shift-multiplexed holographic disc,” Opt. Eng. 42, 1528-1529 (2003).
[38] C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67-74 (2000).
[39] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303-1311 (1966).
[40] H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Sys. Technol. J. 48, 2909-2947 (1969).
[41] A. Yariv, and P. Yeh, Optical Waves in Crytals, (John Wiley & Sons, New York, 1984).
[42] W. C. Su, C. C. Sun, and Y. Ouyang, “Multilayer storage in a shift-multiplexed holographic disk,” Opt. Eng. 42, 1528-1529 (2003).
[43] G. J. Steckman, A. Pu, and D. Psaltis, “Storage density of shift-multiplexed holographic memory,” Appl. Opt. 40, 3387-3394 (2001).
[44] P. Yeh, Introduction to Photorefractive Nonlinear Optics, (Wiley-Interscience, New York, 1894).
[45] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003).
[46] G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403-2417 (1996).
[47] W. C. Su, C. C. Sun, and Y. Ouyang, “Multilayer storage in a shift-multiplexed holographic disk,” Opt. Eng. 42, 1528-1529 (2003).
[48] C. C. Sun, C. Y. Hsu, Y. Ouyang, W. C. Su, and A. R. T. Chiou, “All-optical angular sensing based on holography multiplexing with spherical waves,” Opt. Eng. 41, 2809-2813 (2002).
[49] F. Zhao and K. Sayano, “Compact read-only memory with lensless phase-conjugate holograms,” Opt. Lett. 21, 1295-1297 (1996).
[50] J. -J. P. Drolet, E. Chuang, G. Barbastathis, and D. Psaltis, “Compact, integrated dynamic holographic memory with refreshed holograms,” Opt. Lett. 22, 552-554, (1997).
[51] G. W. Burr, and I. Leyva, “Multiplexed phase-conjugate holographic data storage with a buffer hologram,” Opt. Lett. 25, 499-501, (2000).
[52] J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486-488, 1982.
[53] A. Shiha, W. Sun, T. Shih, and G. Barbastathis, “Volume holographic imaging in transmission geometry,” Appl. Opt. 43, 1533-1551 (2004).
[54] Y. Yang, A. Adibi, and D. Psaltis, “Comparison of transmission and the 90-degree holographic recording geometry,” Appl. Opt. 42, 3418-3427 (2003).
[55] H.-Y. S. Li and D. Psaltis, “Alignment sensitivity of holographic three-dimensional disk,” J. Opt. Soc. Am. A. 12, 1902-1912 (1995).
[56] 林佑年,“體積光柵應用於微物3D掃描之研究,”國立中央大學光電所碩士論文,中華民國八十九年.
[57] D. Psaltis, M Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782-784 (1995).
[58] H.-Y. S. L. and D. Psaltis, “Alignment sensitivity of holographic three-dimensional disks,” J. Opt. Soc. Am. A, 12, 1902-1912 (1995).
[59] H.-Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764-3374(1994).
[60] X. Yi, S. Campbell, P. Yeh, and C. Gu “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory: image place holograms,” Opt. Lett. 20, 779-781, 1995.
[61] M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, and M. Quintanilla, “Effects of multilevel phase masks on interpixel cross talk in digital holographic storage,” Appl. Opt. 36, 3107-3115(1997).
[62] K. Curtis and D. Psaltis, “Cross talk for angle- and wavelength-multiplexed image plane holograms,” Opt. Lett. 19, 1774-1776 (1994).
[63] K. Curtis, C. Gu, and D. Psaltis, “Cross talk in wavelength-multiplexed holographic memories,” Opt. Lett. 18, 1001-1003(1993).
[64] J. W. Goodman, Introduction to Fourier Optics, (New York, McGraw, 1996).
[65] G. W. Burr, and T. Weiss, “Compensation for pixel misregistration in volume holographic data storage,” Opt. Lett. 26, 542-544, (2001).
[66] Y. Yang, A. Adibi, and D. Psaltis, “Comparison of transmission and the 90-degree holographic recording geometry,” Appl. Opt. 42, 3418-3427, (2003).
[67] M.-P. G. W. Burr, H. Coufal, and M. Quintanilla,” Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377-5385(1998).
[68] C. Gu, J. Hong, I. McMichael, and R. Saxena, “Cross-talk-limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 9, 1978-1983, (1992).
[69] F. H. Mok, M. C. Tackitt, and H. M. Stoll, “Storage of 500 high-resolution holograms in LiNbO3 crystal,” Opt. Lett. 16, 605-607, (1991).
[70] D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752-1759, (1988).
[71] F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896-898, (1996).
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2005-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明