博碩士論文 92322020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.216.250.143
姓名 黃嘉進(Chia-chin Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 桁架形狀與構件離散斷面之兩階段最佳化設計法
(Truss shape and members' discrete cross-sectional areas optimization mathod)
相關論文
★ PSO-DE混合式搜尋法應用於結構最佳化設計的研究★ 考量垂直向效應之多項式摩擦單擺支承之分析與設計
★ 以整合力法為分析工具之結構離散輕量化設計效率的探討★ 最佳化設計於結構被動控制之應用
★ 多項式摩擦單擺支承之二維動力分析與最佳參數研究★ 構件考慮剛域之向量式有限元素分析研究
★ 矩形鋼管混凝土考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線研究★ 橋梁多支承輸入近斷層強地動極限破壞分析
★ 穩健設計於結構被動控制之應用★ 二維結構與固體動力分析程式之視窗介面的開發
★ 以離心機實驗與隱式動力有限元素法模擬逆斷層滑動★ 以離心模型實驗探討逆斷層錯動下群樁基礎與土壤的互制反應
★ 九二一地震大里奇蹟社區倒塌原因之探討★ 群樁基礎之最低價設計
★ 應用遺傳演算法於群樁基礎低價化設計★ 應用Discrete Lagrangian Method於群樁基礎低價化設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主要是針對桁架的形狀與構件的離散斷面積進行桁架結構輕量化設計,文中以結構最佳化演算法(Evolutionary Structure Optimization method, ESO)搭配Fully stress design(FSD)對桁架進行兩階段的最佳化設計,束制條件包括節點的位移、構件的應力和挫屈應力束制。設計先以ESO對桁架進行形狀最佳化設計,將節點的座標作為設計變數,屬於連續變數,使用敏感度分析(Sensitivity analyses)來決定桁架節點移動的方向,並以Kuhn-Tucker必要條件作為收斂條件,判斷是否達到形狀最佳化設計。第二階段再以FSD進行桁架構件斷面尺寸最佳化設計,其設計變數為構件斷面積,屬於離散變數,FSD是以構件應力與容許應力之間的比值來決定構件斷面積需求的下限,再以直接進位方式求得到各個構件的離散斷面積。反覆上述兩階段的設計程序求得輕量化設計結果。ESO-FSD的設計程序將透過數個桁架設計例來說明。
摘要(英) In this paper, a structural optimization algorithm which combines evolutionary structure optimization method and fully stress design method is proposed to optimize the shape and discrete sizing of a truss structure for weight minimization. Nodal coordinates and members’ cross-sectional areas are considered as design variables. The structure is subjected to stress, Euler buckling stress and nodal displacement constraints under multiple load cases. Two types of design variables with different natures are optimized separately: 1) the evolutionary node shift method is applied to optimize shape variables, and 2) a fully stressed design (FSD) algorithm is applied to optimize sizing variables, and then round up to discrete values. The evolutionary node shift method is following the idea of evolutionary structure optimization (ESO) method. Nodal position is shifted evolutionarily by means of sensitivity analysis. The Kuhn-Tucker optimality conditions are employed as the convergence criteria for shape optimization. Alternating procedure is implemented to couple the two types of design variables and to synthesize the obtained results. The optimum solution is achieved gradually from the initial design by the combination of the two methods.
關鍵字(中) ★ 離散斷面積最佳化
★ 桁架形狀變數
★ 構件離散斷面積變數
★ 結構最佳化演算法
★ 輕量化設計
關鍵字(英) ★ evolutionary structure optimization method
★ coordinate variables
★ discrete sizing variables
★ minimum weight design
★ fully stress design
論文目次 中文摘要 I
英文摘要 II
目錄 III
表目錄 VIII
圖目錄 X
第一章 緒論 1
1.1 研究目的與動機 1
1.2 文獻回顧 4
1.3 研究內容與方法 6
第二章 ESO於形狀最佳化設計之應用 8
2.1 形狀最佳化問題之數學模式 8
2.2 敏感度分析(Sensitivity Analyses) 9
2.3 Kuhn-Tucker必要條件 15
2.4 節點移動的間距 17
第三章 設計程序 20
3.1 引言 20
3.2 ESO應用於形狀最佳化設計之設計程序 21
3.3 FSD (Fully Stress Design)之設計流程 23
3.4 ESO-FSD演算程序 25
3.5 測試算例 28
3.5.1 13桿平面桁架 28
3.5.2 25桿空間桁架(I) 36
3.6 討論 43
第四章 數值算例與參數研究 44
4.1 測試內容介紹 44
4.2 ESO-FSD最佳化設計 45
4.2.1 13桿平面桁架 45
4.2.2 25桿空間桁架(I) 48
4.2.3 25桿空間桁架(II) 52
4.2.4 10桿平面桁架 57
4.2.5 52桿空間桁架(Dome Structure) 62
4.2.6 112桿空間桁架(I) 71
4.2.7 120桿空間桁架(I) 79
4.3 參數研究 85
4.3.1 112桿空間桁架(II) 85
4.3.2 120桿空間桁架(II) 90
第五章 結論與建議 95
5.1 結論 95
5.2 未來研究方向 96
參考文獻 97
參考文獻 [1] Soh, C. K. and Yang, J. P., “Optimal layout of bridge trusses by genetic algorithms,” Computer-Aided Civil and Infrastructure Engineering, Vol. 13, pp. 247−254 (1998).
[2] Svanberg, K., “Optimization of geometry in truss design,” Computer
Methods in Applied Mechanics and Engineering, Vol. 28, pp. 63−80
(1981).
[3] Zhou, M. and Xia, R., “An efficient method of truss design for
optimum geometry,” Computer and Structures 35(2), pp. 115−119
(1990).
[4] Zhang, W. H., Domaszewski, M. and Fleury, C., “A new mixed
convex approximation method with applications for truss
configuration optimization,” Computers and Structures, Vol. 15, pp.
237−241 (1998).
[5] Soh, C. K. and Yang, J. P., “A genetic algorithm approach for shape
optimization of trusses,” Journal of Computing in Civil Engineering,
Vol. 8, No. 3, pp. 309−325 (1994).
[6] Soh, C. K. and Yang, J. P., “Fuzzy controlled genetic algorithm search
for shape optimization,” Journal of Computing in Civil Engineering,
Vol. 10, No. 2, pp. 143−150 (1996).
[7] Soh, C. K. and Yang, J. P., “Structural optimization by genetic
algorithms with tournament selection,” Journal of Computing in
Civil Engineering, Vol. 11, No. 3, pp. 195−200 (1997).
[8] Soh, C. K. and Yang, J. P., “Genetic programming-based approach for
structural optimization,” Journal of Computing in Civil Engineering,
Vol. 14, No. 1, pp. 31−37 (2000).
[9] Wu, S. J. and Chow, P. T., “Integrated discrete and configuration
optimization of trusses using genetic algorithms,” Computers and
Structures, Vol. 29, No. 4, pp. 695−702 (1995).
[10] Rajeev, S. and Krishnamoorthy, C. S., “Genetic algorithms-based
methodologies for design optimization of trusses,” Journal of
Structural Engineering, Vol. 123, No. 3, pp. 350−358 (1997).
[11] Kaveh, A. and Kalatjari, V., “Size/geometry optimization of trusses
by the force method and genetic algorithm,” ZAMM-Zeitschrift fuer
Angewandte Mathematik und Mechanik, Vol. 84, No. 5, pp.
347−357 (2004).
[12] Fourie, P. C. and Groenwold A., A., “The particle swarm
optimization algorithm in size and shape optimization,” Struct.
Multidisc optim., Vol. 23, pp. 259−267 (2002).
[13] 莊德興,「桁架形狀與桿件離散截面輕量化設計的兩階段無微分
搜尋法」,中華民國第二十八屆全國力學會議,台北市,台灣大
學 (2004)。
[14] Gil, L. and Andreu, A., “Shape and cross-section optimization of a
truss structure,” Computers and Structures, Vol. 79, pp. 681−689
(2001).
[15] Xie, Y. M., and Steven, G. P., “A simple evolutionary procedure for
structural optimization,” Computers and Structures, Vol. 49, No. 5,
pp. 885−896 (1993).
[16] Xie, Y. M., and Steven, G. P., “Evolutionary structural optimization
for dynamic problem,” Computers and Structures, Vol. 58, No. 6, pp.
1067−1073 (1996).
[17] Xie, Y. M., and Steven, G. P., Evolutionary structural optimization,
Springer, Berlin, (1997).
[18] Wang, D., Zhang, W. H. and Jiang J. S., “Combined shape and sizing
optimization of truss structures,” Computational Mechanics Vol. 29,
pp. 307−312 (2002).
[19] Wang, D., Zhang, W. H., and Jiang, J. S., “Truss shape optimization
with multiple displacement constraints,” Computer Methods in
Applied Mechanics and Engineering, Vol. 191(33), pp. 3597−3612
(2002).
[20] Holland, J. H., “Outline for a logical theory of adaptive system,”
Journal of the Association for Computing Machinery, Vol. 3,
pp.297−314 (1962).
[21] Kennedy J. and Eberhart R. C., “Neural network:Particle swarm
optimization,” Proceedings of the IEEE International Conference,
Vol. 27, pp.1942−1948 (1995).
[22] Wah, B. W. and Shang, Y., “A discrete lagrangian-based
global-search method for solving satisfiability problems, theory and
applications,” Journal of Global optimization, Vol. 12, No. 1,
pp.61−99 (1998).
[23] Chu, D. N., Xie, Y. M., Hira, A. and Steven, G. P., “Evolutionary
structural optimization for problems with stiffness constraints,”
Finite Elements in Analysis and Design, Vol. 21, No. 4, pp. 239−251
(1996).
[24] Haftka, R. T. and Kamat, M. P., Elements of structural optimization,
Martinus Nijhoff Publishers, Hague, (1985).
[25] Chu, D. N., Xie, Y. M., Hira, A. and Steven, G. P., “Evolutionary
structural optimization for problems with stiffness constraints,”
Finite Elements in Analysis and Design, Vol. 21, pp. 239−251
(1996).
[26] Zhu, B. F., Li, Z. M., and Zhang, B. C., Principle and applications of
structural optimization, Waterpower Publisher, Beijing, (1984).
[27] Samuel, L. Lipson and Larry, B. Gwin, “The complex method
applied to optimal truss configuration,” Computers and Structures
Vol. 7, pp. 461−468 (1977).
[28] Pedersen, P., “Optimal joint positions for space trusses,” J. Struct.
Div. ASCE, 99(ST10), pp. 2459−2477 (1973).
[29] Arora, J. S., Introduction to optimum design, McGraw−Hill, (1989).
[30] 莊玟珊,「PSO-SA 混合搜尋法與其他結構最佳化設計之應用」,
碩士論文,國立中央大學土木工程研究所,中壢(2007)。
指導教授 莊德興(Der-Shin Juang) 審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明