博碩士論文 92322080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.145.7.187
姓名 蘇文清(WEN-CHING SU)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 軟時窗限制下探討同時正逆向物流之車輛途程問題
(Vehicle Routing Problem with Soft Time Window for Concurrent Bi-Directional Logistics)
相關論文
★ 捷運乘客舒適度調查分析 以台北高運量板南-土城線為例★ 時依性路段暨時窗限制下單一車輛路線問題之研究
★ 飛航組員及客艙組員影響溝通協調關鍵因素之研究★ 廢棄機車回收廠區位選址之研究
★ 航空客運業綠色行銷與措施對消費者忠誠度影響★ 以高齡者觀點評估台北市政府轉運站滿意度及行為意向之研究
★ 自行車接駁軌道運輸關鍵因素之探討-以捷運為例★ 捷運車廂內廣播系統旅客服務品質之研究 -以台北市捷運為例
★ 小汽車駕駛人之行為意向研究★ BRT路線試營運對用路人與乘客服務水準之影響評估―以台中市BRT藍線為例
★ 高鐵車站接駁公車營運前後服務水準之評估與比較-以苗栗高鐵站為例★ 營建公司財務績效評估模式之研究
★ 都會區基地開發道路交通衝擊預測模式之建立─應用多元迴歸與模糊迴歸分析★ 無道碴軌道型式決策模式之研究(應用價值工程及多屬性決策理論)
★ 建設公司全面品質管理. 產品定位與規劃績效關係之研究★ 地方基層建設引用專案營建管理最適統合方式之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
逆物流的導入,能有效降低產品回收的成本,提升顧客滿意程度,以增加利潤;近年來,逆物流的發展漸為各企業所重視;企業常藉由正向物流的正常營運,再全盤性的導入逆物流。在物流的過程中,實體運輸扮演著不可或缺的角色(運輸成本佔了供應鏈總成本的52﹪),正、逆向貨品的順利配送、撿收實有賴運輸服務的妥善規劃。本研究因此以物流業者在特定時窗內完成顧客所需配送、撿收服務為目的,同時考量正、逆向貨品的流動,即以配送為主的車輛繞徑問題同時完成撿收貨品的需求。傳統的車輛途程問題,多設定單一目標(總行駛距離最短為主),但實務上,企業的營運目標多非單一,而是多方面考量,因此本研究同時考量企業營運成本及顧客服務水準,以總行駛距離最短及總違反時窗成本最小為雙目標考量,利用權重加以整合。在本研究中,提出以運送車輛卸貨後滕出之空間進行取貨,故僅需運送車輛內剩餘空間大於該點顧客的取貨需求量,即行撿收,與以往傳統方法需運送車輛內空出一定比例之後,才行撿收的設計不同,本研究並以軟性時窗懲罰成本設計(即隨違反時間的增加,懲罰倍增,以呈現實務上,顧客對於時間的價值性),所羅門標竿題庫(Solomon Benchmark Testing Bank) 經修改後,隨機產生撿收需求,作為基因演算法測試基礎,自行撰寫程式加以驗證。測試結果發現隨著撿收需求量的增加,總成本(含總行駛距離成本以及總違反時窗成本)隨之微幅增加,取貨量約為送貨量的一半時,最多僅增加6.44%的成本,由此可驗證本研究所提出之以車輛卸貨後之空間實行取貨服務,確實能在成本微幅增加內,有效的提高車輛使用率,降低運送車輛回程的空車容量。
摘要(英) Abstract
The introduction of reverse logistics may significantly reduce the cost of returned merchandise, improve the customer’s satisfaction, and therefore increase enterprise profit. Recently, most of enterprises pay their great attention to the inclusion of reverse logistics to proceed hand in hand with already regularly-operated forward logistics. Transportation of physical distribution plays a critical role in logistics. In general, transportation cost is the majority of the total cost in supply chain, fifty-two percent approximately. The principal objective of the study is therefore to concurrently accomplish the delivery and pickup commodities at customer’s specified time window, i.e. to perform forward and reverse logistics at the identical trip. It may be classified as a vehicle routing problem with soft time window for simultaneous commodity delivery and pickup. The traditional vehicle routing problem is mostly considered the single object, the total distance, however the operation of companies is based on multiple objects rather than a single object. Therefore this study is to integrate the shortest distance and the fewest penalty cost by the weighting method in terms of both the cost and the level of service. This study suggested that pickup during the delivery only requires the rest capacity enough for the goods. There is no such constraint that pickup only can be performed when the certain capacity of the car is left. We solved the modified Solomon benchmark with random pickup demand by using Genetic Algorithms with soft time window (The penalty is dramatically increased by increasing the time of being late and waiting to emphasize the value of time for customers). In addition, we program a computer to demonstrate the accuracy of this idea. The results showed that total cost was slightly increased by increasing the demand of pickup and the cost was increased maximally about 6.44% when the quantity of pickup was about half of that of delivery. As a result, the idea, pickup during the delivery, actually improved the efficiency of the vehicle usage and reduced the waste of the capacity of returned vehicles.
關鍵字(中) ★ 逆物流
★ 同時考量取貨與送貨的車輛途程問題
★ 軟性時窗限制
關鍵字(英) ★ reverse logistics
★ simultaneous deliveries and pickups
★ soft time window
論文目次 目 錄
中文摘要..............................Ⅰ
英文摘要..............................Ⅱ
誌謝................................Ⅲ
目錄................................Ⅳ
圗目錄...............................Ⅶ
表目錄...............................Ⅸ
第一章 緒論............................1
1-1研究背景與動機.......................1
1-2研究目的與範圍........................6
1-3研究架構與方法........................9
1-4研究內容與流程.......................12
第二章 文獻回顧..........................15
2-1逆物流問題論述.......................15
2-2同時考量撿收與配送之車輛途程問題..............22
2-3軟時窗限制之車輛途程問題回顧................24
2-4途程問題解法回顧......................26
2-5巨集啟發式解法.......................31
2-6基因演算法.........................33
2-7小結............................46
第三章 撿收與配送車輛途程問題研究模型構建.............48
3-1問題描述..........................48
3-2模式構建..........................52
3-3權重法...........................58
3-4構建初始路徑........................58
3-5執行演算法.........................60
3-6路線改善法.........................65
3-7軟性時窗限制........................69
第四章 範例測試..........................72
4-1測試例題說明........................72
4-2硬性時窗問題測試......................74
4-3權重測試..........................77
4-4突變率與交配率的決定....................90
4-5同時構建初始途程與依序構建初始途程.............92
4-6固定及變動交配率與突變率測試................95
4-7路徑失敗..........................98
4-8車輛使用率的提升......................100
4-9結果分析與探討.......................102
第五章 結論............................107
5-1測試結論..........................107
5-2未來研究方向........................108
5-3逆物流建議.........................109
參考文獻..............................110
參考網站..............................117
附錄(一).............................118
附錄(二).............................120
圖 目 錄
圖1-1 研究架構流程圖.......................10
圖1-2 求解演算流程圖.......................12
圖1-3 研究流程圖.........................14
圖2-1 VRP示意圖.........................23
圖2-2 VRPB示意圖........................24
圖2-3 基因演算法流程圖......................45
圖3-1 模式構建流程圖.......................57
圖3-2 輪盤法圖示.........................62
圖3-3 路線交換改善法前後比較圖..................66
圖3-4 1-0節點轉移改善法前後比較圖................67
圖3-5 1-1節點交換改善法前後比較圖................67
圖3-6 2-opt交換法前後改善比較圖..................68
圖3-7 懲罰成本比較圖.......................70
圖3-8 本研究之懲罰成本設計圖...................71
圖4-1 R107總行駛距離圖......................78
圖4-2 R108總行駛距離圖......................79
圖4-3 R110總行駛距離圖......................79
圖4-4 RC104總行駛距離圖.....................80
圖4-5 RC106總行駛距離圖.....................80
圖4-6 RC107總行駛距離圖.....................81
圖4-7 R107總違反時間成本圖....................82
圖4-8 R108總違反時間成本圖....................82
圖4-9 R110總違反時間成本圖....................83
圖4-10 RC104總違反時間成本圖..................83
圖4-11 RC106總違反時間成本圖..................84
圖4-12 RC107總違反時間成本圖..................84
表 目 錄
表1-1 車輛繞徑問題分類表......................7
表1-1 車輛繞徑問題分類表(續)...................8
表2-1 逆物流定義表........................17
表2-1 逆物流定義表(續)......................18
表2-1 逆物流定義表(續二).....................19
表2-2 逆物流分類表........................21
表2-3 撿收VRP文獻整理......................30
表2-3 撿收VRP文獻整理(續)...................31
表4-1 本研究硬時窗解列表.....................75
表4-1 本研究硬時窗解列表(續)...................76
表4-2 各車輛數測試資料表.....................86
表4-2 各車輛數測試資料表(續)...................87
表4-2 各車輛數測試資料表(續二)..................88
表4-3 交配率與突變率交叉測試表..................91
表4-4 同時構建途程與依序構建途程比較表..............93
表4-5 同時構建途程與依序構建途程運算時間比較表..........94
表4-6 固定交配率、突變率與變動交配率、突變率比較表........96
表4-7 固定交配率、突變率與變動交配率、突變率運算時間比較表....97
表4-8 R型與RC型路網送貨需求表.................98
表4-9 總取貨量佔總送貨量比率與路徑失敗率比較表..........99
表4-10 撿收量對於總目標值的影響..................101
參考文獻 參 考 文 獻
宋明弘,徐俊能(1994),「以遺傳基因演算法則解決多目標考量的推銷員旅行問題之研究」,私立大葉大學事業經營研究所碩士論文,民國八十三年六月。
吳泰熙,徐俊誠(2000),「車輛途程含取貨問題解法之研究」,私立大葉大學工業工程研究所碩士論文,民國八十九年六月。
吳志遠,邵惠鶴,吳新余(1999),「一種新的自適應遺傳算法及其在多峰值函數優化中的應用」,控制理論與應用,第十六卷,第一期,127-129頁。
李健(2002),「逆向供應鏈」、IT經理世界,第十四期。
胡黃德,敖君瑋(1999),「禁制搜尋法於軟性時窗限制之車輛途程問題研究」,私立元智大學工業工程研究所碩士論文,民國八十八年六月。
胡黃德,曾維豪(2000),「軟性時窗與回程撿收之車輛途程問題研究」,私立元智大學工業工程研究所碩士論文,民國八十九年六月。
胡黃德,魏宗徹(2001),「整合時窗限制與回程撿收之多車種車輛途程問題」,私立元智大學工業工程與管理研究所碩士論文,民國九十年六月。
徐旭昇,顏成佑(2000),「基因演算法解軟性時窗車輛途程問題之研究」,私立元智大學工業工程與管理研究所碩士論文,民國八十九年六月。
耿伯文,楊昭峰(2002),「製造策略對逆向供應鏈績效之影響」,國立成功大學工業管理科學研究所碩士論文,民國九十一年六月。
郝皓(2002),「逆向物流」IT經理世界,第十五期。
張美香,陳祥瑞(2002),「含時窗限制與撿收之動態車輛途程規劃之研究」,私立中華大學經營管理研究所碩士論文,民國九十一年六月。
許志義(2003),「多目標決策」,五南出版社,民國九十二年十月。
陳正芳,莊英群(2003),「應用禁忌搜尋法混合送收貨之車輛途程問題」,私立逢甲大學工業工程研究所碩士論文,民國九十二年一月。
陳昭華,王妙娜(2003),「動態交通號誌維修路線規劃模式之研」究,私立中華大學科技管理研究所碩士論文,民國九十二年六月。
陳昭華,廖凱怡(2004),「時間相依路網之動態交通號誌維修問題之研究」,私立中華大學科技管理研究所碩士論文,民國九十三年六月。
陳珠龍,劉雅魁(1996),「運用路線鄰域法求解車輛路線含回程取貨問題」,國立國防館理學院資源管理研究所碩士論文,民國八十七年六月。
陳惠國,易德華(1998),「軟時窗車輛途程問題之研究」,國立中央大學土木工程研究所碩士論文,民國八十七年六月。
陳柳欽(2002),「綠色物流探討」,http://www.56net.com
曾國雄,黃文昌(1992),「時窗限制下貨物配送問題求解方法之研究-時空雙準則平行節省啟發法之研擬」,國立交通大學交通運輸研究所碩士論文,民國八時一年六月。
曾國雄,杜世文(1992),「多目標與模糊時窗貨物配送啟發式解法之研究」,國立交通大學交通運輸研究所碩士論文,民國八十一年六月。
曾國雄,王日昌,黃明居(1996),「以基因演算法與樣版路徑求解旅行推銷員問題」,運輸計畫季刊,第二十五卷,第三期,第493-516頁。
曾國雄,王日昌(1997),「基因演算法在多目標組合最佳化問題之研究-以旅行推銷員問題為例」,國立交通大學交通運輸研究所博士論文,民國八十六年六月。
曾國雄,邱裕鈞,許書耕(1997),「主線柵欄式收費站最佳區位遺傳演算尋優法與逐步尋優法之比較分析」,中國土木水利工程學刊,第九卷,,第一期,第171-178頁。
馮正民,邱裕鈞(2004),「研究分析方法」,建都文化事業股份有限公司,民國九十三年六月。
廖文慈(1999),「應用基因演算法求解優先順序旅行推銷員問題之研究」,私立元智大學工業工程與管理研究所碩士論文,民國八十八年六月。
鄧振源(2002),「計畫評估~方法與應用~」,海洋大學運籌規劃與管理研究中心,民國九十一年十月。
劉復華,申生元(1999),「時窗限制車輛途程問題」,國立交通大學工業工程與管理研究所碩士論文,民國八十八年六月。
駱景堯,黃聖峰(1999),「考量回程撿收之車輛途程問題研究」,私立大葉大學工業工程研究所碩士論文,民國八十八年六月。
顏上堯,陳建榮(2001),「含凹形節線成本最小成本網路流動問題之全域搜尋演算法研究」,國立中央大學土木工程研究所碩士論文,民國九十年六月。
蘇義雄,黃詩彥(2000),「企業逆物流之探索研究」,私立東吳大學企業管理學研究所碩士論文,民國八十九年六月。
Blumberg, D. F. (1999), “Strategic Examination of Reverse Logistics & Repair Service Requirements, Needs Market Size, and Opportunities”, Journal of Business Logistics. 20:141-159.
Bodin, L. and Golden, B. (1981), “Classification in Vehicle Routing and Scheduling”, Networks. 11:97-108.
Bodin, L., Golden, B., Assad, A. and Bull, D. (1983), “Routing Scheduling of Vehicles and Crews: The State of Art”, Computers and Operational Research. 10:63-211.
Carter, C. R. and Ellram, L. M. (1998), “Reverse Logistics: A review of the Literature and Framework for Future Investigation”, Journal of Business Logistics. 19:85-102.
Casco, D.O., Golden, B. L. and Wasil, E. A. (1988), “Vehicle Routing with Backhauls: models, algorithms, and case studies. In: Golden, L. and Assad, A. (eds)”, Vehicle Routing: Methods and Studies, North-Holland, Amsterdam. 127-147.
Cohen, M. (1988), “Replace, rebuild or remanufacture”, Equipment Management. 16:22-26.
Council of Logistics Management (1998), “Reuse and Recycling-Reverse Logistics Opportunities”, Glossary.
Dale, S. R. and Ronald, S. T. (1998), “Going Backwards: Reverse Logistics Trends and Practices”, Reverse Logistics Executive Council.
Daugherty, P. J., Chad, W. A. and Alexander, E. E. (2001), “Reverse Logistics: The Relationship between Resource Commitment and Program Performance”, Journal of Business Logistics. 22:107-123.
Deif, I. and Bodin, L. (1984), “Extension of the Clarke and Wright Algorithm for Solving the Vehicle Routing Problem with Backhauling. In proceedings of the babson conference on sofeware use”, In Transportation and logistic management, A. E. Kidder, Babson Prak, MA. 75-96.
Dowlatshahi, S. (2000), “Developing a Theory of Reverse Logistics”, Interfaces. 30:143-155.
Fisher, M and Jaikumar, R. (1981), “ A Generalized Assignment Heuristic for Vehicle Routing”, Networks. 11:109-124.
Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., van der Laan, E., van Nunen, J. A. E. E. and van Wassenhove, L. N. (1997), “Quantitative Models for Reverse Logistics: A Revies”, European Journal of Operation Research. 103:1-17.
Fleischmann, M., Krikke, H. R., Dekker, R. and Flapper, S. P. (2000), “A Characterization of Logistics Networks for Product Recovery”, Omega. 28:653-666.
Guide Jr., V., Daniel, R. and Srivastava, R. (1997), “An Evaluation of Order Release Strategies in a Remanufacturing Environment”, Computer Operations Research. 24:37-47.
Guide Jr., V., Daniel, R., Wassenhove, V. and Luk, N. (2002), “The Reverse Supply Chain”, Harvard Business Review. 80:25-26.
Golden, B. L. (1977), “Evaluting a Sequential Vehicle Routing Algorithm”, AIIE Transactions. 9:204-208.
Golden, B., Assad, A., Levy, L. and Gheysens, F. (1984), “The Fleet Size and Mix Vehicle Routing Problem”, Computers and Operations Research. 11:49-66.
Golden, B., Baker, E., Alfaro, J. and Schaffer, J. (1985), “The Vehicle Routing Problem with Backhauling: two approaches”, Proceeding of the Twenty-First Annual Meeting of S. E. TIMS, Myrtle Beach, SC. 90-92.
Golden, B. L. and Assad, A. (1986), “Vehicle Routing with Time Window Constraints”, American journal of Mathematical and Management Sciences. 6:251-260.
Goldberg, D. E. (1989), Genetic Algorithm in search, Optimization and Machine Learning, Addison Wesley.
Koskosidis, Y. A., Powell, W. B. and Solomon, M. M. (1992), “An Optimization-Based Heuristic for Vehicle Routing and Scheduling with Soft Time Windows Constraints”, Transportation Science. 26:69-85.
Louis S. J., Yin, X. and Yuan, Z. Y. (1999), “Multiple Vehicle Routing with Time Windows Using Genetic Algorithms”, Proceedings of the Congress of Evolutionary
Computation. 1804-1808.
Lenstra, J. and Rinnooy, K. (1981), “Complexity of Vehicle Routing and Scheduling Problem”, Network. 1:221-227.
Lin, S. (1965), “Computer Solutions of the Traveling Salesman Problem”, The Bell System Technical Journal. 44:2245-2269.
Gen, M. and Cheng R. (2000), “Genetic Algorithms and Engineering Optimization”, Ashikaga Institute of Technology.
Gen, M. (2004), “Evolutionary Algorithms and Optimization: Theory and Applications”, Graduate School of Information, Production & Systems. Waseda University.
Osman, I. (1993), “Metastrategy Simulated Annealing and Tabu Search Algorithms for the Vehicle Routing Problem”, Annals of Operations Research. 41:421-451.
Potvin, JY. and Laporte, G. (1996), “Genetic Algorithm for the Traveling Salesman Problem”, Annals of Operations Research. 63:339-370.
Rudolph, G. (1994), “Convergence properties of canonical genetic algorithms”, IEEE Trans. Neural Networks. 5:96-101.
Salhi, S. and Nagy, G. (1999), “A Cluster Insertion Heuristic for Single and Multiple Depot Vehicle Routing Problems with Backhauling”, Journal of the Operational Research Society. 50:1034-1042.
Sexton, T. and Choi, Y. (1986), “Pickup and Delivery of Partial Loads with Time Windows”, American Journal of Math Management Science. 6:369-398.
Solomon, M. M. (1987), “Algorithm for the Vehicle Routing and Scheduling Problems with Time Window Constrains”, Operations Research. 35:254-265.
Solomon, M. M. (1988), “Survey Paper: Time Window Constrained Routing and Scheduling Problems”, Transportation Science. 22:1-13.
Solomon, M. M. , Baker E. and Schaffer, J. (1988), “Vehicle Routing and Scheduling Problems with Time Window Constrains: Effectient Implementations of Solution Improvement Procedures”, In B.L. Golden and A.A. Assad, editors, Vehicle muting: Methods and studies, North-Holland, Amsterdam, 85-106.
Srinivas, M. M. and Patnaik, L. M. (1994), “Genetic Algorithms: A Survey”, IEEE Computer. 17-26.
Stock, J. R. (1998), “White Paper: Reverse Logistics. USA”, Council of Logistics Management.
Stock, J. R. (1998), “Development and Implementation of Reverse Logistics Programs”, Council of Logistics Management. 579-586.
Toth, P. and Vigo, D. (1997), “An Exact Algorithm for the Vehicle Routing Problem with Backhauls”, Transportation Science. 31:372-385.
Yano, C., Chan, T., Richter, L., Cutler, T., Murty, k. and McGettigan, D. (1987), Vehicle Routing at Quality Stores”, Interfaces. 17:52-63.
Zhu, K. Q. (2000), “A New Genetic Algorithm for VRPTW”, International Conference on Artificial Intelligence, Las Vegas, USA.
指導教授 謝浩明(How-Ming Shieh) 審核日期 2005-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明