博碩士論文 92323066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.14.143.149
姓名 黃大慶(Ta-Ching Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 振動床於弱振動下顆粒運動機制研究
(Motion Mechanisms in the Vibrated Granular Bed Under Weakly Vibration)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文探討矩形柱弱振動床中影響顆粒運動之機制與原因。由於振動床的弱振動運動現象在實驗中極易受到各種因素變化的影響,因此本研究以類固體層高度實驗設計探討影響振動床內顆粒運動的因素。探討不同振動條件時,類固體層的高度變化及類液體層的深度變化。
類固體層高度隨著振動加速度的增強而降低。在低振動頻率情形下,受到振動加速度的影響較為敏感,較小的振動加速度就可以達到充分的類液體化運動狀態;而在中等振動頻率的情形下,類固體層高度與振動加速度的關係,呈現比較緩和的負相關;在高振動頻率的情形下,需要較大的振動加速度才能使顆粒體達到充分類液體化運動狀態。在振動條件比較小的情形下,顆粒體聚集成塊狀如同固體一般,定義為完全類固體化區域。逐步得增強振動加速度,當振動條件超過一臨界值?s時,容器內顆粒體會開始發生類液體化運動現象;持續地增強振動加速度,當振動條件超過一臨界值?l時,容器內顆粒會達到充分類液體化運動現象。
本論文明確的決定出顆粒振動床在不同振動條件下的三種運動現象,完全類固體化運動區域(Completely Solid-Like Region)、類液體化運動區域(Liquid-Like Region),充分類液體化運動區域(Fully Liquid-Like Region)並獲得各種不同振動頻率下的運動機制振動加速度相圖。
摘要(英) In vibration granular bed. The study investigated the effects under weakly vibrating mechanisms in a rectangular vibrated bed. The main experiment were performed to study the weakly vibrating mechanisms in a vibrated granular bed. First, the solid-like experiment was performed to investigate the solid-like layer and the minimum vibration acceleration under the different vibration frequencies, which all the particles in the bed moved allover the bed. And the minimum vibration acceleration under the different vibration frequencies, which all the particles in the bed triggered off the bed.
The three different motion mechanisms were found in this study. The solid-like layer existed in Solid-Like Region motion mechanism where the vibration conditions were weak. In Liquid-Like Region mechanism where the binary mixture of particles. For the stronger vibration conditions, the effects of strength on particles motions in the vibrated granular bed were dominant.
關鍵字(中) ★ 振動床
★ 弱振動
★ 粒子流
關鍵字(英) ★ Vibrated Bed
★ Granular Flow
★ Weak Vibration
論文目次 摘要............................................................................................................. I
誌謝............................................................................................................II
目錄.......................................................................................................... III
附表目錄....................................................................................................V
附圖目錄.................................................................................................. VI
符號說明................................................................................................VIII
第一章 簡介 1
1.1 顆粒流介紹 1
1.1.1顆粒體簡介 1
1.1.2顆粒流與一般流體之差異性 3
1.2 顆粒體在振動床內的現象 7
1.3 功能性梯度材料 12
1.4 研究動機與方向 16
第二章 實驗方法 19
2.1 實驗設備 19
2.2 實驗步驟 25
2.3 實驗原理與方法 30
2.3.1實驗參數 30
2.3.2實驗量測方式及判別方法 32
第三章 結果與討論 34
第四章 結論與未來展望 49
第五章 參考文獻 51
附 表 目 錄
表1: 功能性梯度材料的實際應用範圍 57
附 圖 目 錄
圖1: 功能性梯度材料的特徵圖 58
圖2: 實驗研究流程圖 59
圖3: 實驗裝置圖 60
圖4: 實驗容器示意圖 61
圖5: 實驗顆粒初始配置圖 62
圖6: 類固體層高度及類液體層深度示意圖 63
圖7: 振動頻率為2 kHz、?=7時,類液體化運動區域
大於10 mm實驗示意圖 64
圖8: 振動頻率為2 kHz、?=4時,類液體化運動區域
小於10 mm實驗示意圖 65
圖9: 充分類液體化運動現象實驗示意圖 66
圖10:類固體層高度與振動加速度的關係圖 67
圖11:不同振動頻率下,?s與?l比較的關係圖 68
圖12:類固體層高度與(a/d)對數座標關係圖 69
圖13:類固體層高度與振動速度幅度的關係圖 70
圖14:振動頻率為100 Hz時,各振動條件之紅色玻璃珠
與透明玻璃珠混合層深度與時間的關係圖 71
圖15:振動頻率為200 Hz時,各振動條件之紅色玻璃珠
與透明玻璃珠混合層深度與時間的關係圖 72
圖16:振動頻率為400 Hz時,各振動條件之紅色玻璃珠
與透明玻璃珠混合層深度與時間的關係圖 73
圖17:振動頻率為2 kHz時,各振動條件之紅色玻璃珠
與透明玻璃珠混合層深度與時間的關係圖 74
圖18:振動頻率為3 kHz時,各振動條件之紅色玻璃珠
與透明玻璃珠混合層深度與時間的關係圖 75
圖19:振動頻率為4 kHz時,各振動條件之紅色玻璃珠
與透明玻璃珠混合層深度與時間的關係圖 76
圖20:各振動條件之紅色玻璃珠與透明玻璃珠混合層深度
初始成長速率與?的關係圖 77
圖21:各振動條件之紅色玻璃珠與透明玻璃珠混合層深度
初始成長速率與(a/d)對數座標關係圖 78
圖22:各振動條件下三種運動機制的相圖 79
參考文獻 第五章 參考文獻
[1]Neederman, R. M., 1992, Statics and Kinematics of Granular Materials, Cambridge University Press.
[2]Cundall, P. A., 1979, “A discrete numerical model for granular assemblies,” Geotechnique, Vol. 29, pp. 47-65.
[3]Campbell, C. S., 1990, “Rapid Granular Flows,” Annu. Rev. Fluid Mech., Vol. 22, pp. 57-92.
[4]Herrmann, H. J., 1995, “Physics of granular media, Chaos solitons & fractals,” Vol. 6, pp. 203-212.
[5]Jenkins, J. T. and Savage, S. B., 1983, “A Theory for Rapid Flow of Identical, Smooth, Nearly Elastic Spherical Particles,” J. Fluid Mech.,
Vol. 130, pp. 187-202.
[6]Campbell, C. S., 1990, “Rapid Granular Flows,” Annu. Rev. Fluid Mech., Vol. 22, pp. 57-92.
[7]Campbell, C. S. and Brennen, C. E., 1985b, “Chute Flows of Granular Material: Some Computer Simulations,” J. Appl. Mech., Vol. 52,
pp. 72-78.
[8]Reynolds, O., 1885, “On the Dilatancy of Media Composed of Rigid Particles in Contact, With experimental illustrations,” Phil. Mag., Vol. 20, pp. 469-481.
[9]Reynolds, O., 1886, “Experiments Showing Dilatancy, A Property of Granular Materials Possibly Connected with Gravitation,” Proc. Roy. Inst. of Gr. Britain., Vol. 11, pp.354-363.
[10]Herrmann, H. J., 1995, “Physics of granular media, Chaos solitons & fractals,” Vol. 6, pp. 203-212.
[11]Herrmann, H. J., 1999, “Statistical models for granular materials,” Phys. A, Vol. 263, pp. 51-62.
[12]Knight, J., Jaeger, H. M., and Nagel, S. R., 1993, “Vibration induced size separation in granular media: the convection connection,” Phys. Rev. Lett., Vol. 70, No. 24, pp. 3728-3731.
[13]Suzuki, K., Hosaka, H., Yamazaki, R. and Jimbo, G., 1980, “Drying Characteristics of Particles in a Constant Drying Rate Period in Vibro-Fluidized Bed,” J. Chem. Engi., Japan, Vol. 13, pp.117-122.
[14]Yu, S. H., Ma, B. J. and Weng, Y. Q., 1992, “Drying Performance and Heat Transfer in a Vibrated Fluidized Beds,” Drying 92, A. S. Mujumdar, ed., Elsevier Science Publishers, Amsterdam, pp. 731-740.
[15]Pakowski, Z., Mujumdar, A. S. and Strumillo, C., 1984, “Theory and Application of Vibrated Beds and Vibrated Fluid Beds for Drying Processes,” Advances in Drying, Vol. 3, A. S. Mujumdar, ed., Hemisphere Publishing, pp. 245-306.
[16]Jaeger, H. M. and Nagel, S. R., 1992, “Physics of the granular state,” Science, Vol. 255, pp. 1523-1531.
[17]Faraday, M., 1831, “On a peculiar class of acoustical figures and on certain forms assumed by groups of particles upon vibrating elastic surfaces,” Fhil. Trans. R. Soc., London, Vol. 52, pp. 299-340.
[18]Bachmann, D., 1940, Verfahrenstechnik Z.D.I. Beiheft, No. 2, p43(cited by Thomas et al., 1989)
[19]Thomas, B., Mason, M. O., Liu, Y. A. and Squires, A. M., 1989, “Identifying States in Shallow Vibrated Beds,” Powder Tech., Vol. 57,
pp. 267-280.
[20]Chlenov, V. A. and Mikhailov, N. V., 1965, “Some Properties of a Vibrating Fluidized Bed,” J. of Eng. Phys., Vol. 9, pp. 137-139
[21]Lan, Y. and Rosato, A. D., 1995, “Macroscopic Behavior of Vibrating Beds of Smooth Inelastic Spheres,” Phys. Fluids, Vol. 7, No. 8,
pp. 1818-1831.
[22]Brennen, C. E., Ghosh, S., and Wassgren, C. R., 1996, “Vertical Oscillation of a Bed of Granular Material,” J. of Appl. Mech., Vol. 63,
No. 1, pp.156-161.
[23]Jullien, R., Meakin, P. and Parlovitch, A., 1992, “Three-Dimensional Model for Particle-Size Segregation by Shaking,” Phys. Rev. Lett.,
Vol. 69, pp. 640-643.
[24]Jullien, R.,Meakin, P. and Pavlovitch, A., 1993a, “Jullien, Meakin, and Pavlovitch Reply,” Phys. Rev. Lett., Vol. 70, p. 2195.
[25]Clement, E., Duran, J., and Rajchenbach, J., 1992, “Experimental Study of Heaping in a Two-Dimensional Sandpile,” Phys. Rev. Lett., Vol. 69,
No. 8, pp.1189-1192.
[26]Savage, S. B. and Lun, C. K., 1988, “Particle Size Segregation in Inclined Chute Flow of Dry Cohesionless Granular Solids,” J. Fluid Mech.,
Vol. 189, pp. 311-335.
[27]Ehrichs, E., Jaeger, H., Karczmar, G., Knight, J. B., 1995, “Granular Convection Observed by Magnetic Resonance Imagine,” Science,
Vol. 267, No. 5, pp.1632-1634
[28]Rosato, A. D., Lan, Y., 1995, “Macroscopic behavior of vibrating beds of smooth inelastic spheres,” Phys. Fluids., Vol. 7, No. 8, pp.1818-1831.
[29]Douady, S., Fauve, S., and Laroche, C., 1989, “Subharmonic Instabilities and Defect in a Granular Layer under Vertical Vibrations,” Europhys. Lett., Vol. 8, No. 7, pp. 621-627.
[30]Wassgren, C. R., 1997, “Vibration of Granular Materials,” Ph.D. Thesis, California Institute of Technology, California, USA.
[31]Mücklich, F., Lorinser, M., Hartmann, S., Beinstingel, S., Linke, J., and Roedig, M., 1997, Be-Cu Gradient Materials through Controlled Segregation-Basic Investigations, Proc. 3rd IEA workshop on Berylium Technol. For Fusion, Oct., Mito City, Japan, Kawamura, H., Okamoto, M. (Eds.), Japan Atomic Energy Research Institute, pp.102-106.
[32]Mücklich, F., Beinstingel, S., and Arnold, W., 1999, Investigations of Vibration Induced Particle Segregation for the Processing of FGM, Materials Science Forum, Vol. 308, pp. 25-30.
[33]Fiscina. J., Ohligschläager, and Mücklich, F., 2003, accepted for publication by the J. Mat. Sci. Lett., JMSL-9632-03.
[34]Fiscina, J., Jankovic, I. D. and Mücklich, F., August 2003, submitted to the J. of Appl. Phys. JR03-2568.
[35]紀翔和,民國91年,“功能梯度材料之力學分析”, 國立台灣科技大學營建工程研究所碩士論文。
[36]Reddy, J. N., 2000, “Analysis of functionally graded plates,” International Journal for Numerical Methods in Engineering, Vol. 47, pp. 663-684,
[37]Ng, T. Y., Lam, K. Y., Liew K. M. and Reddy J. N., 2001, “Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading,” International Journal of Solids and Structures, Vol. 38,
pp. 1295-1309.
[38]Koizumi, M., 1997, “FGM activities in Japan,” Comp. PartB:Engi.,
Vol. 28, pp.1-4.
[39]林遠平,民國88年,“功能梯度材料圓管之熱應力分析”,私立逢甲大學機械工程研究所碩士論文。
[40]Ennis, B. J., Green, J., and Davies, R., 1994, The legacy of neglect in the U.S., “Chemical engineering progress,” pp. 32-43.
[41]林遠平,民國88年,“功能梯度材料圓管之熱應力分析”,私立逢甲大學機械工程研究所碩士論文。
[42]Garcia, M. O., 2001, Untersuchungen zur vibrations-induzierten Segregation in granularen Medien, Diplomarbeit, Universität des Saarlandes, Saarbrücken.
[43]Ohligschläger, M., Fiscina, J., Garcia Moncayo, O., and Mücklich, F., september 2001, Prägradierung von Pulvern mittels vibrationsinduzierter Segregation, Poster DFG gradient materials workshop, Darmstadt.
[44]Fiscina, J., Ohligschläger, M., Garcia Moncayo, O., Jancovik Ilić, D., and Mücklich, F., september 2001, Struckturierte W-Cu Legierungen durch induzierte Vibration des Pulvers, Poster, DFG gradient materials workshop, Darmstadt.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2005-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明