博碩士論文 92324007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:249 、訪客IP:18.191.176.81
姓名 林京亮(Ching-Liang Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 薄膜式氮化鎵發光二極體之亮度提升
(Light Enhancement of Thin-GaN Light Emitting Diodes)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氮化鎵(GaN)材料發展在近二十年內有了相當大的突破,特別是將氮化鎵以化學氣相沈積的方式成長在藍寶石(Sapphire)基板上,可以得到單晶,且直接能隙的氮化鎵,藉由摻雜銦(In)可調變氮化鎵發光波長自紫外光區到藍光,目前藍光發光二極體主要的材料即是氮化鎵為主的材料,也因為得到了藍光氮化鎵材料,使得利用藍光發光二極體配合黃光螢光粉或其他波長轉換材料,將發光二極體用於白光照明用途的可能性大大提升。照明用途的氮化鎵發光二極體必須要具備效率高的特性,也就是發射出的光功率與消耗的電功率比值要愈高愈好。此外,氮化鎵發光二極體在高電功率操作時,散熱的問題將變得非常棘手,由於傳統式(Conventional)發光二極體結構是以導熱係數低的藍寶石為基板,造成傳統式發光二極體溫度極高而有光電特性退化的議題。因此,在本研究中,元件的製作結構為薄膜式發光二極體結構,此結構利用晶圓鍵合技術以及雷射剝離技術,將氮化鎵薄膜自磊晶的藍寶石基板轉移到導熱係數較高的矽基板,由於散熱特性較佳,所以薄膜式發光二極體已經被視為發展高亮度氮化鎵發光二極體的主要結構。在本研究中,將對此結構的兩個重要的議題做探討:(1)設計適合使用於薄膜式發光二極體製程的金屬反射層及歐姆接觸系統以及(2)提高光自薄膜式發光二極體的表面萃取效率。
在製作薄膜式發光二極體時,所需用的晶圓鍵合技術是一個高溫高壓的製程,又矽基板對藍光波段是一個非透明基板,在設計P型氮化鎵的接觸電極時,必須同時設計一反射層。因此在本研究中,用鎳金鎳鋁(p-GaN/Ni/Au/Ni/Al)以及銀鋁合金系統(p-GaN/Ni/Ag(Al))當作P型氮化鎵之高熱穩定性的金屬反射系統,後者的金屬系統是以Ag(Al)合金降低P型氮化鎵接觸電阻與反射率在高溫鍵合製程中銀的聚集以及電性退化的狀況。其中以鎳金鎳鋁的系統中,接觸電阻可以在500 ℃熱處理之後維持在10-2 Ω-cm2,藍光波段的反射率也可以維持在60 %,此高熱穩定性P型氮化鎵接觸電極相當適合用於薄膜式氮化鎵發光二極體結構。
由於氮化鎵折射率與空氣的折射率的差異相當大,產生相當嚴重的全反射現象,使得光在氮化鎵材料中產生後,不容易被萃取到空氣中。在本研究第二階段中,利用聚苯乙烯(Poly-styrene)球當作模板,在薄膜式發光二極體之N型氮化鎵表面,以溶膠凝膠法製作氧化鋁以及氧化矽蜂窩狀結構,增加薄膜式發光二極體的發光功率分別為35 %以及19 %。再者,藉由討論光在此系統的光萃取行為與氧化物蜂窩狀結構如何增益薄膜式發光二極體的光萃取效率,並提出光功率增加的理論公式。
摘要(英) GaN-based materials have leaped to a brand new stage in the past two decades. The single crystalline and direct band-gap GaN film can be grown on the sapphire substrate by metal-organic chemical vapor deposition (MOCVD). The wavelength of the emitting light from GaN ranges from ultra-violate (UV) to blue light region by doping various indium content. Nowadays, the material of the blue light emitting diodes is based on the GaN material. Pumping phosphors or other wavelength converter by blue light, the white light can be generated. Hence, the GaN material is the key material for white solid-state lighting.
For the solid-state lighting applications, the GaN-based LED operates under a high electric power. Under such a high operation power, the heat dissipation is a critical issue. The sapphire substrate of the conventional LED has a poor thermal conduction. Also, the degradation of the electric and optical property would be very serious due to the high operation temperature. Therefore, in this study, the thin-GaN LED device is produced by the wafer bonding process and the laser lift-off process, which are used to transfer GaN thin film from the sapphire substrate to a better thermal conductive Si substrate. Owing to the better thermal dissipation, the thin-GaN LED structure is a very promising candidate for developing high-power GaN LED. Two main topics of the studied thin-GaN LED structure in this work: (1) Design a suitable p-GaN contacts and reflector for thin-GaN LED structure. (2) Increase the light extraction efficiency of thin-GaN LED.
In thin-GaN LED process, the wafer bonding process is necessary and it is a high temperature and high pressure process. Furthermore, the Si substrate is a non-transparent material for the blue light region. So, the p-type GaN contact should consist of an ohmic contact layer and a reflector as well. It is very important to develop a high thermally stable p-GaN contact. In this study, the Ni/Au/Ni/Al p-GaN contacts and Ni/Ag(Al) p-GaN contacts are investigated. These two thermally stable p-GaN contacts can reduce the degradation of the specific contact resistance and the reflection upon the thermal process. The specific contact resistance of the Ni/Au/Ni/Al p-GaN contact keeps on the order of 10-2 Ω-cm2 after 500 ℃ annealing. The reflectance of the Ni/Au/Ni/Al metal scheme is 60 % after 500 ℃ annealing. This high thermally stable Ni/Au/Ni/Al p-GaN contact is very suitable for the thin-GaN LED structure.
Another critical issue is the low light extraction efficiency due to large refraction index difference between GaN and air. The light emitted from the active layer in GaN is significantly trapped in the GaN epi-layer, and a serious total internal reflection occurs. In this study, the aluminum oxide and silicon oxide honeycomb structure are produced on the n-GaN emitting surface by poly-styrene spheres template and sol-gel method. The aluminum oxide and silicon oxide honeycomb structures capping on the n-GaN surface can increase the external quantum efficiency by 35 % and 19 %, respectively. The mechanism of increasing light out-put by the oxide honeycomb structure would be discussed.
關鍵字(中) ★ 發光二極體
★ 氮化鎵
★ 雷射剝離
★ 晶圓鍵合
★ 歐姆接觸
★ 聚苯乙烯
★ 蜂窩狀結構
關鍵字(英) ★ honeycomb structure
★ ohmic contact
★ GaN
★ Poly-styrene
★ wafer bonding
★ Light Emitting Diodes
★ Laser lift-off
論文目次 Abstract (Chinese)……………………………………………………I
Abstract (English)…………………………………………………III
Table of Contents……………………………………………………V
Figure Captions……………………………………………………VIII
Table Lists…………………………………………………………XII
Chapter 1 Introduction……………………………………………1
1-1 The develop of GaN-based material………………………1
1-2 The thermally stable Mg-doped GaN contact……………2
1-2-1 Metal-semiconductor contacts…………………………2
1-2-2 Mg-type GaN contacts……………………………………6
1-2-3 The specific contact resistance measurement……8
1-2-4 The thermally stable p-contacts……………………10
1-3 Thin-GaN LED structure……………………………………13
1-3-1 Introduction of thin-GaN LED………………………13
1-3-2 wafer bonding and laser lift-off process……… 14
1-4 Efficiency of the GaN LED…………………………………16
1-4-1 Diode physics……………………………………………16
1-4-2 The efficiency of LED…………………………………18
1-4-3 The light extraction efficiency of LED……………19
Chapter 2 High-thermal-stability and Low-resistance p-GaN Contacts for Thin-GaN Light Emitting Diodes……22
2-1 Introduction……………………………………………………22
2-2 NiO/Au/Ni/Al p-GaN contact metal scheme………………24
2-2-1 Experiment…………………………………………………24
2-2-2 Results and discussions………………………………26
2-2-3 Conclusion……………………………………………… 32
2-3 Ni/Ag(Al) p-GaN contact metal scheme……………………33
2-3-1 Experiment…………………………………………………33
2-3-2 Results and Discussions…………………………………34
2-3-3 Conclusion…………………………………………………41
2-4 Conclusion……………………………………………………41
Chapter 3 Thin-GaN LED Fabrication…………………………43
3-1 Introduction…………………………………………………43
3-2 Experiment……………………………………………………44
3-3 Results and Concussions……………………………………45
3-4 Conclusion……………………………………………………51
Chapter 4 The Light Enhancement of Oxide Honeycomb Structures on Thin-GaN Light-Emitting Diodes………………53
4-1 Introduction……………………………………………………53
4-2 Experiment………………………………………………………55
4-3 Results and discussions……………………………………58
4-3-1 The oxide honeycomb structure on n-GaN of thin-GaN LED…………………………………………………………………58
4-3-2 The internal quantum efficiency of oxide honeycomb structure on thin-GaN LED……………………………63
4-3-3 Fundamental theory of light penetrating through the honeycomb structure……………………………………………64
4-3-4 The light enhancement model of oxide honeycomb structure on thin-GaN LED…………………………………………66
4-4 Conclusion………………………………………………………70
Chapter 5 Conclusions……………………………………………71
References……………………………………………………………74
參考文獻 Chapter 1 Introduction
[1] H. P. Maruska, and J. J. Tietjen, Appl. Phys. Lett., 15, 327 (1969)
[2] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, J. Luminescence, 4, 63 (1971)
[3] H. P. Maruska, W. C. Rhines, and D. A. Stevenson, Mat. Res. Bull., 7, 777 (1972)
[4] H. P. Maruska, D. A. Stevenson, and J. I. Pankove, Appl. Phys. Lett., 22, 303 (1973)
[5] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys., 28, L2112 (1989)
[6] S. Nakamura, N. Iwasa, and M. Senoh, US patent 5306662 (1994)
[7] I. Akasaki, H. Amano, K. Itoh, N. Koide, and K. Manabe, Inst. Phys.Conf. Ser., 129, 851 (1992)
[8] S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., 32, L8 (1993)
[9] S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett., 62, 2390 (1993)
[10] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., 64, 1687 (1994)
[11] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys., 34, L797 (1995)
[12] X. Guo, J. W. Graff, and E. F. Schubeert, IEDM Technical Digest, IEDM-99, 600 (1999)
[13] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., 255-258, Wiley, New York
[14] F. A. Padovani and R. Stratton, Solid-State Electron., 9, 695 (1966)
[15] C. R. Crowell and V. L. Rideout, Solid-State Electron., 12, 89 (1969)
[16] M. Miyachi, T. Tanaka, Y. Kimura, H. Ota, Appl. Phys. Lett., 72, 1101 (1998)
[17] S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, Jpn. J. Appl. Phys., 31 139 (1992)
[18] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, and K. K. Shih, J. of Appl. Phys., 86 , 4491 (1999)
[19] H. L. Kwok, Electronic Materials, 240, PWS Publishing Company, Boston
[20] V. M. Bermudez, J. Appl. Phys., 80, 1190 (1996)
[21] D. K. Schroder, Semiconductor Material and Device Characterization, 145~ 157, Wiley, New York
[22] G. T. Chen, C. C. Pan, C. S. Fang, T. C. Huang, and J. I. Chyi, Appl. Phys. Lett., 85, 2797 (2004)
[23] L. C. Chen, J. K. Ho, F. R. Chen, J. J. Kai, L. Chang, C. S. Jong, C. C. Chiu, C. N. Huang, and K. K. Shih, Phys. Stat. Sol. A, Appl. Res., 176, 773 (1999)
[24] Z. Hassan, Y. C. Lee, F. K. Yam, Z. J. Yap, N. Zainal, H. Abu Hassan, and L. Ibrahim, Phys. Stat. Sol. (c), 1, 2528 (2004)
[25] D. W. Kim, and C. R. Lee, Journal of Crystal Growth, 286, 235 (2006)
[26] Y. Gao, T. Fujii, R. Sharma, K. Fujito, S. P. Denbaars, S. Nakamura, and E. L. Hu, Jpn. J. Appl. Phys., 43, L637 (2004)
[27] M. Alexe, and U. GÖsele, Wafer Bonding Application and Technology, Chap. 10, Springer, Berlin
[28] P. H. Chen, C. L. Lin, and C. Y. Liu, Appl. Phys. Lett, 90,132120 (2007)
[29] F. Shi, K. L. Chang, J. Epple, C. F. Xu, K. Y. Cheng, and K. C. Hsieh, J. Appl. Phys., 92, 7544 (2002)
[30] F. Shi, H. Chen, and S. Maclaren, Appl. Phys. Lett., 84, 3504 (2004)
[31] K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Wen, Appl. Phys. Lett., 81, 3774 (2002)
[32] U. GÖsele, Y. Bluhm, G. Kästner, P. Kopperschmidt, G. Kräuter, R. Scholz, A. Schumacher, S. Senz, and Q. Y. Tong, Y. L. Chao, and T. H. Lee, J. Vac. Sci. Technol. A, 17, 1145 (1999)
[33] H. B. Huntington, Diffusion in Solids: Recent Development, edited by A. S. Nowick and J. J. Burton, 303~352, Academic Press, New York (1979)
[34] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, Appl. Phys. Lett., 75, 1360 (1999)
[35] D. S. Wuu, S. C. Hsu, S. H. Huang, and R. H. Horng, Phys. Stat. Sol. A, Appl. Res., 201, 2699 (2004)
[36] W. S. Wong, T. Sands, and N. W. Cheung, Appl. Phys. Lett.,72, 599 (1998)
[37] N. Newman, J. Ross, and M. Rubin, Appl. Phys. Lett., 62, 1242 (1993)
[38] C. R. Miskys M. K. Kelly, O. Ambacher, and M. Stutzmann, Phys. Stat. Sol. (c), 0, 1627 (2003)
Chapter 2 High-thermal-stability and Low-resistance p-GaN Contacts for Thin-GaN Light Emitting Diodes
[1] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, IEEE J. Sel. Top. Quantum Electron. 8, 310 (2002)
[2] http://www.cree.com/News/news175.asp
[3] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004)
[4] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, IEEE J. Sel. Top. Quantum Electron., 8, 310 (2002)
[5] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett., 84, 855 (2004)
[6] Soo Young Kim and Jong-Lam Lee, Electrochem. Solid-State Lett., 7, G102 (2004)
[7] H. W. Jang, and J. L. Lee, Appl. Phys. Lett., 85, 5920 (2004)
[8] H. C. Kim and T. L. Alford, J. of Appl. Phys., 94 , 5393 (2003)
[9] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, Appl. Phys. Lett. 75, 1360 (1999)
[10] D. S. Wuu, S. C. Hsu, S. H. Huang, and R. H. Horng, Phys. Stat. Sol. A, Appl. Res., 201, 2699 (2004)
[11] W. S. Wong, T. Sands, and N. W. Cheung, Appl. Phys. Lett. 72, 599 (1998)
[12] N. Newman, J. Ross, and M. Rubin, Appl. Phys. Lett. 62, 1242 (1993)
[13] O. Ambacher, M. S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R. A. Fischer, A. Miehr, A. Bergmaier, G. Dollinger, J. Vac. Sci. Technol. B, 14, 3532 (1996)
[14] C. R. Miskys, M. K. Kelly, O. Ambacher, and M. Stutzmann, Phys. Stat. Sol. (c), 0, 1627 (2003)
[15] C. F. Chu, C. C. Yu, H. C. Cheng, C. F. Lin, and S. C. Wang, Jpn. J. Appl. Phys. 42, L147 (2003)
[16] S. C. Hsu and C. Y. Liu, Electrochem. Solid-State Lett., 9, G171 (2006)
[17] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, Appl. Phys. Lett., 74, 1275 (1999)
[18] D. L. Hibbard, S. P. Jung, C. Wang, D. Ullery, Y. S. Zhao, W. So, H. Liu, and H. P. Lee, Appl. Phys. Lett., 83, 311 (2003)
[19] K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science for Electrical Engineers and Materials Scientists, Chap.12, Macmillan, New York
[20] L. J. Kecskes, S. T. Szewczyk, A. B. Peikrishvili, and N. M. Chikhradze, Metall. Mater. Trans. A, 35, 1125 (2004)
[21] W. Liu, and J. N. Dupont, Metall. Mater. Trans. A, 34, 2633 (2003)
Chapter 3 Thin-GaN LED Fabrication
[1] H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, Appl. Phys. Lett., 78, 1303 (2001)
[2] Y. Kawakami, Y. Narukawa, K. Omae, Sg Fujita and S. Nakamura, Phys. Stat. Sol. A, Appl. Res., 178, 331 (2000)
[3] T. Nishida, H. Saito and N. Kobayashi, Appl. Phys. Lett., 79, 711 (2001)
[4] H. Kim, S. J. Park, and H. Hwang, IEEE Tran. Electron Devices, 48, 1065 (2001)
Chapter 4 The Light Enhancement of Oxide Honeycomb Structures on thin-GaN Light-Emitting Diodes
[1] S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, Jpn. J. Appl. Phys., 34, 797 (1995)
[2] H. X. Jiang, S. X. Jin, J. Li, J. Shakya and J. Y. Lin, Appl. Phys. Lett., 78, 1303 (2001)
[3] E. F. Schubert, Light-Emitting Diodes, 84, Cambridge University Press, Cambridge
[4] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato and T. Taguchi, Jpn. J. Appl. Phys., 40, 583 (2001)
[5] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu, Solid-State Electronics, 47, 1539 (2003)
[6] Y. Kawakami, Y. Narukawa, K. Omae, Sg Fujita and S. Nakamura, Phys. Stat. Sol. A, Appl. Res., 178, 331 (2000)
[7] T. Nishida, H. Saito and N. Kobayashi, Appl. Phys. Lett., 79, 711 (2001)
[8] R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt, S. Schoberth, P. Kiesel, G. Borghs, G. H. Dohler, and P. Heremans, IEEE Trans. Electron Devices, 47, 1492 (2000)
[9] R. H. Horng, S. H. Huang, C. C. Yang, and D. S. Wuu, IEEE J. Sel. Top. Quantum. Electron, 12, 1196 (2006)
[10] C. C. Yang, R. H. Horng, C. E. Lee, W. Y. Lin, K. F. Pan, Y. Y. Su, and D. S. Wuu, Jpn. J. Appl. Phys., 44, 2525 (2005)
[11] C. H. Chan, C. C. Chen, C. K. Huang, W. H. Weng, H. S. Wei, H. Chen, H. T. Lin, H. S. Chang, W. Y. Chen, W. H. Chang, and T. M. Hsu, Nanotechnology, 16, 1440 (2005)
[12] C. K. Huang, C. H. Chan, C. Y. Chen, Y. L. Tsai, C. C. Chen, J. L. Han, and K. H. Hsieh, Nanotechnology, 18, 265305 (2007)
[13] E. Yablonovitch, J. Opt. Soc. Am, 72, 899 (1982)
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2008-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明