博碩士論文 92426022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.147.81.54
姓名 林聖傑(Sheng-Chieh Lin)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 在跨概念階層中挖掘交易間之關聯規則
(Mining Inter-transactional Association Rules among Cross-concept Levels)
相關論文
★ 以類神經網路探討晶圓測試良率預測與重測指標值之建立★ 六標準突破性策略—企業管理議題
★ 限制驅導式在製罐產業生產管理之應用研究★ 應用倒傳遞類神經網路於TFT-LCD G4.5代Cell廠不良問題與解決方法之研究
★ 限制驅導式生產排程在PCBA製程的運用★ 平衡計分卡規劃與設計之研究-以海軍後勤支援指揮部修護工廠為例
★ 木製框式車身銷售數量之組合預測研究★ 導入符合綠色產品RoHS之供應商管理-以光通訊產業L公司為例
★ 不同產品及供應商屬性對採購要求之相關性探討-以平面式觸控面板產業為例★ 中長期產銷規劃之個案探討 -以抽絲產業為例
★ 消耗性部品存貨管理改善研究-以某邏輯測試公司之Socket Pin為例★ 封裝廠之機台當機修復順序即時判別機制探討
★ 客戶危害限用物質規範研究-以TFT-LCD產業個案公司為例★ PCB壓合代工業導入ISO/TS16949品質管理系統之研究-以K公司為例
★ 報價流程與價格議價之研究–以機殼產業為例★ 產品量產前工程變更的分類機制與其可控制性探討-以某一手機產品家族為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要基於考慮各品項在資料庫中的出現期間,並且在多門檻的環境之下挖掘跨概念階層中,交易之間的關聯規則。
在交易間之關聯規則的研究之中,FITI是基於Apriori演算法所發展出來的方法,在挖掘的過程之中,讀取資料庫的次數過多,而降低了挖掘的效率,而在本研究主要基於FP-tree演算法發展出的方法ITCL_FP-tree(MIS),挖掘在跨概念階層中交易間的關聯規則使挖掘出來的規則更為詳細,也能更增進挖掘過程的效率,並且考慮到在多門檻限制的研究中所沒有考慮到的,也就是資料庫中品項的出現週期。品項的出現週期主要考慮到該品項並非在整個資料庫中都會出現,可能只會在某一定時間出現,因此我們以建立各品項的出現週期,配合多門檻限制進行挖掘,並且在挖掘關聯規則時將會以各品項的出現週期為基礎,以挖掘更為詳細的關聯規則。
我們利用實際的資料進行實驗驗證,ITCL_FP-tree(MIS)比CL_FP-tree(MIS)以及IT_FP-tree(MIS)能夠採擷更多的關聯規則,包含有跨概念階層的資訊以及不同交易之間的關聯規則,同時,利用了移除多餘的父階品項更可有效的降低多餘的關聯規則數量以及在挖掘過程中的效率。
摘要(英) In our research, we mainly consider the Appearance period of each item in the database and minimum item support (MIS) to mine inter-transactional association rules.
In the previous researches of inter-transactional association rules, the methodology they proposed are based on Apriori Algorithm and didn’t with the consideration of product concept hierarchy. The efficiency of their methods is reduced by generating too many candidates for frequent items and the rules wouldn’t give us more detailed information. In our research, we proposed an methodology named ITCL_FP-tree(MIS) for mining inter-transactional association rules not only about items in the atomic level but also cross the concept levels. Considering of each item’s natures of appearance, we count the support of each item with the consideration of the Appearance period of items instead of count the support by the length of the database. This will solve the rare item problem.
In our experiment, we use the real-life data for verifying ITCL_FP-tree(MIS) can mine more frequent rules than CL_FP-tree(MIS) and IT_FP-tree(MIS) which we proposed for mining inter-transactional association rules among items in the atomic level of concept hierarchy. And we also use the concept of gap for pruning the frequent but redundant parent items.
關鍵字(中) ★ 不同的最小門檻值
★ 跨階層關聯規則
★ 交易間之關聯規則
★ FP-tree演算法
★ 出現週期
關鍵字(英) ★ Appearance period
★ Minimum Item Support
★ Cross-concept levels association rules
★ FP-tree
★ Inter-transactional association rules
論文目次 CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION AND BACKGROUND 1
1.2 PROBLEM DESCRIPTION 3
1.3 RESEARCH OBJECTIVE 4
1.4 METHODOLOGY 5
CHAPTER 2 LITERATURE REVIEW 6
2.1 ASSOCIATION RULES MINING AMONG MULTIPLE AND CROSS CONCEPT LEVELS 6
2.2 ASSOCIATION RULES MINING WITH MULTIPLE MINIMUM SUPPORTS 6
2.3 MINING INTER-TRANSACTIONAL ASSOCIATION RULES 8
CHAPTER 3 METHODOLOGY 9
3.1 SUPPORT COUNTING AND FREQUENT ITEMSET MINING 9
3.1.1 Concept hierarchy construction 10
3.1.2 Appearance period construction 11
3.1.3 Support counting and frequent itemset mining 13
3.1.4 Pruning the redundant item by gap 15
3.2 DATA TRANSFORMATION 16
3.3 ITCL_FP-TREE CONSTRUCTION AND ITCL_FP-TREE GROWTH 22
CHAPTER 4 EXPERIMENT EVALUATION AND PERFORMANCE STUDY 28
4.1 ENVIRONMENT OF EXPERIMENTS 28
4.2 RESULT AND ANALYSIS OF EXPERIMENTS 28
CHAPTER 5 CONCLUSION AND FUTURE RESEARCH 46
5.1 CONCLUSION 46
5.2 FUTURE RESEARCH 46
REFERENCE 48
APPENDIX A 50
APPENDIX B 51
參考文獻 [1] R. Agrawal, T. Imielinski, A. Swami. 1993. Mining Association Rules Between Sets of Items in Large Databases. in Proc. 1993 ACM SIGMOD Int’l Conf. on
Management of Data, Washington, D.C. pp.207 – 216.
[2] R. Agrawal, H. Mannila, R. Shikant, H. Toivonen, A. I. Verkamo. 1996. Fast Discovery of Association Rules. in Advances in Knowledge Discovery and Data Mining. pp.307 – 328.
[3] J. Han, Y. Fu. 1995. Discovery of Multiple-Level Association Rules from Large
Databases. in Proc. of the 21st VLDB Conf., Zurich, Switzerland.
[4] B. Liu, W. Hsu and Y. Ma. 1999. Mining Association Rules with Multiple Minimum supports. In Proc. 1999 ACM SIGMOD Int’l Conf. on Management of Data, San Diego, CA, USA.
[5] K. Wang, Y. He and J. Han. 2003. Pushing Support Constrains Into Association Rules Mining. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003. pp.642-658.
[6] M. C. Tseng and W. Y. Lin. 2001. Mining Generalized Association Rules with
Multiple Minimum Supports. I-Shou University, Kaohsiung 84008, Taiwan
[7] Y. H. Hu and Y. L. Chen .2003. Discovering and Maintaining Association Rules with Multiple Minimum Supports. Department of Information Management, National Central University Chung-Li 320, Taiwan , R.O.C
[8] H. Lu, L. Feng, J. Han. 2000. Beyond Intratransaction Association Analysis:Mining Multidimensional Intertransaction Association Rules. In ACM Press, NY, USA. 18(4)
[9] J. Han, J. Pei, Y. Yin. 2000. Mining Frequent Patterns without Candidate Generation. in Proc. of the ACM Int. Conf. on Management of Data, Dallas, TX.
[10] R. Agrawal, and R. Srikant. 1996. Mining Sequential Patterns: Generalizations and Performance Improvements. Research Report. IBM Research Division.
[11] R. Agrawal and R. Srikant. 1995. Mining sequential patterns. In International Conference on Database Engineering, IEEE, 1995. pp. 3–14.
[12] A. U. Tansel and N. F. Ayan. 1998. Discovery of Association Rules in Temporal Databases. In 1998 American Association for Artificial Intelligence, NY. USA.
[13] Y. Li, P. Ning, X. S. Wang and S. Jajodia. 2001. Discovering Calendar-based Temporal Association Rules. Center for Secure Information Systems, George Mason University, Fairfax, VA 22030, USA.
[14] J. Ale and G. Rossi. 2000. An approach to discovering temporal association rules. In Proc. of the 2000 ACM Symposium on Applied Computing, pp. 294–300.
[15] H. Mannila, H. Toivonen, and A.I. Verkamo. 1995. Discovering frequent episodes in sequences (extended abstract). In Proc. 1st Conference on Knowledge Discovery and Data Mining, AAAI Press, Menlo Park, pp. 210-215.
[16] K. H. Tung, H. Lu, J. Han, and L. Feng. 2003. Efficient Mining of
Intertransaction Association Rules. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2003
指導教授 沈國基(Gwo-Ji Sheen) 審核日期 2005-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明