博碩士論文 92521028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.227.209.101
姓名 林貴城(Kuei-Cheng Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於寬頻劃碼多工進接系統及無線區域網路線性補償功率放大器之研製
(The Design and Implementation of Linear Compensation Power Amplifiers for W-CDMA and WLAN Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本論文主題在於討論以矽製程實現高線性度之功率放大器電路,應用於寬頻劃碼多工進接系統(W-CDMA)與無線區域網路(WLAN)。採用台積電0.35?m矽鍺雙載子互補金屬氧化半導體製程及0.18?m互補金屬氧化半導體製程。以下依各章節不同的線性補償架構與應用來分類,概述論文中各電路的實際量測結果。
第一章簡述相關研究及各章所描述的內容。
第二章探討功率放大器必須考量的系統規格與參數,以及介紹各種不同類型的功率放大器。
第三章探討開汲極適應式線性放大器應用於W-CDMA,並且找出其功率級與線性偏壓電路之間的阻抗關係藉以改善放大器的線性度,在組抗比為3的時候獲得最佳的線性改善,最後在電路加上MOS二極體使得線性補償的特性更為顯注。此電路具有13.5dB的增益、大於10dB的輸出卅入回返損耗、18.6dBm的輸出1dB增益壓縮點、27.2dBm的輸出三階截斷點、31.2 %的最大功率增進效率。
第四章主要在探討高線性化功率放大器應用於W-CDMA,分別有預先失真與前饋式架構兩種改善線性化的技術,一個簡單可調增益預先失真放大器能有效的降低在輸出端的三階諧波量。利用台積電製程實現簡單不複雜的預先失真電路,具有7.8dB的增益、大於10dB的輸入回返損耗、大於7dB的輸出回返損耗、17.9dBm的輸出1dB增益壓縮點、30dBm的輸出三階截斷點在可變電壓Vbep=0.9V、37%的最大功率增進效率。前饋式架構方面,以一個簡單差動對架構,適當的選擇偏壓點及元件尺寸比率來有效抑制在輸出端的三階諧波量,此電路具有7.06dB的增益、大於16dB的輸入回返損耗、大於8.5dB的輸出回返損耗、14.4 dBm的輸出1dB增益壓縮點、31dBm的輸出三階截斷點及24.5%的最大功率增進效率。
第五章主要在探討高平均功率增進效率的功率放大器應用於W-CDMA及WLAN,分別有適應性偏壓多帝功率放大器與變壓轉換功率放大器兩種架構用來改善平均功率增進效率。最後利用台積電製程來實現此兩種功率放大器。量測後適應性偏壓多帝功率放大器具有6.5dB的增益、大於16dB的輸入回返損耗、大於3 dB的輸出回返損耗、20dBm的輸出1dB增益壓縮點、31dBm的輸出三階截斷點及24.5%的最大功率增進效率。變壓轉換功率放大器則具有9.5dB的增益、大於18dB的輸入回返損耗、大於5dB的輸出回返損耗、16.8dBm的輸出1dB增益壓縮點、30 dBm的輸出三階截斷點及42%的最大功率增進效率。
摘要(英) Abstract
The thesis investigated the analysis, design and implementation of linear compensation power amplifiers with silicon-based technologies for W-CDMA, WLAN 802.11a applications. The power amplifiers were implemented in tsmc 0.35?m SiGe BiCMOS and 0.18?m CMOS technologies.
The brief description of the related researches is given in the chapter one and the contents of each following chapters.
In the Chapter two the specifications and the operation class of power amplifier are presented.
In the Chapter three, I report a linear power amplifier with open adaptive collector biasing design for W-CDMA applications. The size effect of linearizer is investigated to improve linearity. The impedance ratio between the bias circuit and power stage is optimized at the factor of 3. Another compensated mechanism is provided by the drain-gate connected MOS diode. The diode feedback technique provides a supplement RF current in the higher power level which further enhances the linearity of the amplifier. The circuit was implemented with tsmc SiGe BiCMOS technology. This PA provides a 13.5dB gain with input or output return loss better than 10dB, and has output P1dB of 18.6dBm; output IP3 of 27.2dBm, the maximum PAE of 31.2 %.
Chapter four reports a high linearity power amplifier for W-CDMA applications. Two different linearization architectures, Predistortion (PD) and Feedforward are studied. A simple circuit of variable gain predistorter (APD) was implemented with tsmc SiGe BiCMOS technology. The APD amplifier provides a 7.8dB gain with input better than 10dB, output return loss is 7dB and has output P1dB of 17.9dBm, output IP3 of 30dBm at Vbep=0.9V, the maximum PAE of 37%. A simple differential amplifier using feedforward technique was implemented on a single chip by tsmc SiGe BiCMOS technology. The bias point and device size ratio of differential amplifier should be carefully chosen to get proper third order nonlinearity for the IM3 cancellation. The feedforward amplifier provides a 7.06dB gain with input better than 16dB, output return loss is 8.5dB and has output P1dB of 14.4dBm, and output IP3 of 31dBm, the maximum PAE of 24.5 %.
Chapter five reports a high average efficiency power amplifier for W-CDMA and WLAN applications. Doherty amplifier and DC-DC converter amplifiers are investigated. The Doherty amplifier was implemented with tsmc CMOS technology, which is provided a 6.5dB gain with input better than 16dB, output return loss is 3dB and has output P1dB of 20dBm, output IP3 of 31dBm, the PAE of 24.5 %. The DC-DC converter amplifier was implemented by tsmc SiGe BiCMOS technology, which is provided a 9.5dB gain with input better than 18dB, output return loss is 5dB and has output P1dB of 16.8dBm, output IP3 of 30dBm, the maximum PAE of 42 %.
關鍵字(中) ★ 寬頻劃碼多工進接系統
★ 無線區域網路
★ 矽鍺雙載子互補金屬氧化半導體
★ 互補金屬氧化半導體製程
★ 開汲極適應式線性放大器
★ 預先失真
★ 前饋式架構
★ 適應性偏壓多帝功率放大器
★ 變壓轉換器
關鍵字(英) ★ SiGe BiCMOS
★ Predistortion
★ Open Adaptive Collector Bias Amplifier
★ Dc-Dc Converter
★ Adaptive Bias Doherty Amplifier
★ CMOS
★ Feedforward
★ W-CDMA
★ WLAN
論文目次 Table of contents
Table of contents...................................................... VI
List of Tables..........................................................IX
List of Figures..........................................................X
Chapter 1 Introduction...................................................1
1.1 Background.......................................................1
1.2 Motivation.......................................................2
1.3 Thesis organization..............................................4
Chapter 2 RF Power Amplifier.............................................5
2-1 RF Power Amplifier...................................................5
2.1.1 Linearity......................................................5
2.1.2 1 dB Compression point (P1dB)..................................5
2.1.3 Intermodulation Distortion.....................................6
2.1.4 Third Order Intercept Point....................................7
2.1.5 Efficiency.....................................................8
2.1.6 Adjacent Channel Power Ratio...................................8
2.1.7 Effect of Nonlinearity on a W-CDMA System......................9
2.2 Power Amplifier Classes.............................................11
2-2-1 Class A, AB, B, and C Power Amplifiers........................11
2-2-2 Class A ......................................................12
2.2.3 Class B.......................................................14
2.2.4 Class AB......................................................15
2.2.5 Class C.......................................................15
2.2.6 Class D.......................................................16
2.2.7 Class E.......................................................17
2.2.8 Class F.......................................................18
Chapter 3 Linear Power Amplifier with an Open Collector Adaptive Bias
Controlled....................................................20
3.1 Introduction........................................................20
3.2 The Evolution of Linearity Power Amplifier..........................21
3.2.1 A Novel Series Diode Linearizer for Power Amplifier............21
3.2.2 Using a Parallel Diode with a Bias Feed Resistance.............23
3.2.3 Power Amplifier with an Active Linearization Technique.........25
3.3 Circuit Structure and Principle.....................................27
3.4 Design Flow.........................................................33
3.5 Measured Results....................................................36
3.6 Conclusion..........................................................43
Chapter 4 Power Amplifier with Linearity Compensation Technique.........44
4.1 Introduction........................................................44
4.2 The Evolution of Predistortion Power Amplifier......................48
4.2.1 A Predistortion Using a Tunable Resonator......................48
4.2.2 Dynamic Range Variable Gain Power Amplifier....................49
4.2.3 Variable Gain Active Predistorter..............................49
4.3 Circuit Structure and Principle.....................................50
4.3.1 The Design of a Variable Gain Active Predistorter..............50
4.3.2 Measured Results...............................................53
4.4 Circuit Structure and Principle.....................................61
4.4.1 The Design of Differential Feedforward Drive Amplifier (DFDA)..61
4.4.2 Measured Results...............................................64
4.5 Conclusion .........................................................72
Chapter 5 Power Amplifier using Efficiency Enhancement Technique........74
5.1 Introduction........................................................74
5.2 Circuit Structure and Principle.....................................79
5.2.1 The Design of Linearity Doherty amplifier......................79
5.2.2 Measured Results...............................................84
5.3 Circuit Structure and Principle.....................................92
5.3.1 The Design of Drive Amplifier with Dc-Dc converter.............92
5.3.2 Measured Results...............................................96
5.4 Conclusion.........................................................105
Chapter 6 Conclusion and Future Work...................................107
6.1Conclusion..........................................................107
6.2 Future Work........................................................108
References.............................................................109
參考文獻 References
[1]R.S. Narayanaswami, “RF CMOS Class C Power Amplifier for Wireless Communications”.
[2]L. Yacoubi, K. Al-Haddad, F. Fnaiech, L.A. Dessaint, ” A DSP-based implementation of a new nonlinear control for a three-phase neutral point clamped boost rectifier prototype, ” Industrial Electronics, IEEE Transactions on Volume 52, Issue 1, pp. 197 – 205, Feb. 2005.
[3]Third Generation Partnership (3GPP). http://www.3gpp.org
[4] IEEE Std 802.11a 1999, Partl 1: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band.
[5] S. Hamalainen, H. Lilja, A. Hamalainen, ” WCDMA adjacent channel interference requirements,” in Proc. Of the 50th IEEE Vebicular Technology Conference, Fall 99, Vol.5, Amsterdam, The NETHERLANDS, 19-20, pp. 2591-2595, September 1999.
[6] ETSI TS 125 101 v3.2.2 (2000-4): UMT-S; UE Radio transmission and reception (FDD).
[7] S. C. Cripps, “RF power amplifier for wireless communications,” Edition 1999.
[8] F. H. Raab, D. J. Rupp, “HF power amplifier operates in both class B and class D,” in Proc. RF Expo West, San Jose, CA, Mar. 17–19, pp. 114–124 , 1993.
[9]T.B. Mader, Z.B. Popovic, “The transmission-line high-efficiency class-E amplifier,” IEEE Microwave Guided Wave Lett., vol. 5, pp. 290–292, Sept. 1995.
[10]F.H. Raab, “Class-E, class-C, and class-F power amplifiers based upon a finite number of harmonics,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1462–1468, Aug. 2001.
[11] T. Yoshimasu, M. Akagi, N. Tanba, S. Hara, “An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications,” IEEE Journal of Solid-State Circuits, vol. 33, No.9, September 1998.
[12] K. Yamauchi, K. Mori, M. Nakayama, Y. Itoh, Y. Mitsui, O. Ishida,” A novel series diode linearizer for mobile radio power amplifiers,” Microwave Symposium Digest, 1996., IEEE MTT-S International , Volume: 2 , 17-21, June 1996.
[13] K. Yamauchi, K. Mori, M. Nakayama, Y. Mitsui, T. Takagi,” A microwave miniaturized linearizer using a parallel diode with a bias feed resistance,” Microwave Theory and Techniques, IEEE Transactions on , Volume: 45 , Issue: 12 , pp. 2431 – 2435, Dec. 1997.
[14] T. Yoshimasu, M. Akagi, N. Tanba, S. Hara,” A low distortion and high efficiency HBT MMIC power amplifier with a novel linearization technique for ?/4 DPSK modulation,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1997. Technical Digest 1997., 19th Annual , 12-15, pp. 45 - 48 , Oct. 1997.
[15] Y.S. Noh, C.S. Park, ” Linearized high efficiency HBT MMIC dual band power amplifier module for L-band applications,” Microwave Conference, 2001. APMC 2001. 2001 Asia-Pacific , Volume: 3 , pp. 3-6 ,Dec. 2001.
[16] J.H. Kim, Y.S. Noh, C.S. Park,” High linear HBT MMIC power amplifier with partial RF coupling to bias circuit for W-CDMA portable application,” Microwave and Millimeter Wave Technology, 2002. Proceedings. ICMMT 2002. 2002 3rd International Conference on , 17-19 ,Aug. 2002.
[17] B. Razavi, RF Microelectronics, Prentice Hall, 1997.
[18] G. Hau, T.B. Nishimura, N. Iwata, ”High efficiency, wide dynamic range variable gain and power amplifier MMICs for wideband CDMA handsets,” Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters Volume 11, Issue 1, pp. 13 – 15 ,Jan 2001.
[19] N. Gupta, A. Tombak, A. Mortazawi, “A predistortion linearizer using a tunable resonator,” Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters Volume 14, Issue 9, pp. 431 – 433 ,Sept. 2004.
[20] K. Yamauchi, K. Mori, M. Nakayama, Y. Mitsui, T. Takagi,” A microwave miniaturized linearizer using a parallel diode,” in IEEE MTT-S Int. Dig., Denver, CO, pp. 1199-1202, June 1997.
[21] J.K. Cavers,” Adaptation behavior of a feedforward amplifier linearizer,” Vehicular Technology, IEEE Transactions on Volume 44, Issue 1, pp. 31 – 40, Feb. 1995.
[22] J. Cha, J. Yi, J. Kim, B. Kim; “Optimum design of a predistortion RF power amplifier for multicarrier WCDMA applications” Microwave Theory and Techniques, IEEE Transactions on , Volume: 52 , Issue: 2 , pp. 655-663, Feb. 2004.
[23] P.L. Gilabert, E. Bertran, G. Montoro, J. Berenguer,” Study on the robustness of a 22 MHz bandwidth feedforward amplifier at the 2.4 GHz ISM-band,” Personal, Indoor and Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE International Symposium on Volume 1, 5-8 pp. 186 - 190 Vol.1, Sept. 2004.
[24]S. Narahashi, T. Nojima,” Extremely low-distortion multi-carrier amplifier-self-adjusting feed-forward (SAFF) amplifier,” Communications, 1991. ICC 91, Conference Record. IEEE International Conference on 23-26 pp. 1485 - 1490 vol.3, June 1991.
[25] N. Gupta, A. Tombak, A. Mortazawi,” A predistortion linearizer using a tunable resonator,” Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters] Volume 14, Issue 9, pp. 431 – 433 ,Sept. 2004.
[26] J.D. Cressler, “SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications , ” IEEE Trans. MTT, Vol. 46 , No. 5, pp.572 – 589, May 1998.
[27] G. Hau, T.B. Nishimura, N. Iwata, “A linearized power amplifier MMIC for 3.5 V battery operated wide-band CDMA handsets,” in IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, pp. 1503–1506, June 2000.
[28] J.H. Tsai, T.W. Huang,” A novel SiGe BiCMOS variable-gain active predistorter using current steering topologies,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2004. Digest of Papers. 2004 IEEE 6-8 pp. 559 – 562, June 2004.
[29] K.L.I. Maula, ” Variable gain control circuit for linear applications,” Electronics Letters Volume 36, Issue 20, 28 pp. 1682 – 1683, Sep 2000.
[30] P.R. GRAY, R.G. MEYER,” Analysis and design of analog integrated circuits,” (John Wiley & Sons, Inc. , pp. 673-675, , 1993.
[31] P. B. Kcnington, High-Linearity RF Amplifier Design, Arteeh House, 2000.
[32] H. Gao, H. Zhang, H. Guan, L.W. Yang, G.P. Li, “A novel compact composite power cell for high linearity power amplifiers in InGaP HBTs,” Compound Semiconductor Integrated Circuit Symposium, 2004. IEEE
24-27 pp.45 – 48, Oct. 2004
[33] P. Asbeck, G. Hannington, P.F. Chen, L. Larson,“Efficiency and linearity improvement in power amplifiers for wireless communications,” in IEEE GaAs IC Symp. Tech. Dig., pp. 15–18, 1998.
[34] W.H. Doherty, “A new high efficiency power amplifier for modulated waves,” Proc. IRE, Vol.24, No.9, pp. 1163-1182, 1936.
[35] D.M. Upton, P.R. Maloney, “A new circuit topology to realize high efficiency, high linearity, high power microwave amplifiers,” RAWCON’98 Proceedings, pp. 317-320, 1998.
[36] F.H. Raab, "Efficiency of Doherty RF power amplifier systems," IEEE Trans. on Broodcosting BC-33, pp. 77-83, 1987.
[37] Y. Yang, J. Cha, B. Shin; B. Kim, “A microwave doherty amplifier employing envelope tracking technique for high efficiency and linearity” Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters] , Volume: 13 , Issue: 9 pp. 370 – 372, , Sept. 2003.
[38] S.C. Cripps, “Advanced Techniques in RF Power Amplifier Design,” Edition 1999.
[39] T. Nojima, S. Nishiki, and K. Chiba,‘‘High efficiency transmitting power amplifiers for portable radio units,’’ IEICE Transactions, Vol. E74, 1563 (1991).
[40] P.M. Asbeck, T. Itoh, Y. Qian, M.F. Chang, L. Milstein, G. Hanington, P.F. Chen, V. Schultz, D.W. Lee, J. Arun, “Device and circuit approaches for improved linearity and efficiency in microwave transmitters,” in IEEE MTT-S Tech. Dig., pp. 327–330, 1998.
[41] G. Hanington, P.F. Chen, V. Radisic, T. Itoh, P.M. Asbeck, “Microwave power amplifier efficiency improvement with a 10 MHz HBT dc–dc converter,” in IEEE MTT-S Tech. Dig., pp. 589–592, 1998.
[42] J. F. Sevic, “Statistical characterization of RF power amplifier efficiency for CDMA wireless communication systems,” in Wireless Commun. Conf., Boulder, CO, pp. 110–113, Aug. 1997.
[43] M. Iwamoto, A. Williams, P.F. Chen, A.G. Metzger, L.E. Larson, P.M. Asbeck, “An extended Doherty amplifier with high efficiency over a wide power range, “IEEE Trans. Microwave Theory Tech., vol.49 no. 12, pp. 2472 - 2479 , Dec.2001.
[44] K.J. Youn, B. Kim, C.S. Lee, S.J. Maeng, J.J. Lee, K.E. Pyun, H.M. Park, “ Low dissipation power and high linearity PCS power amplifier with adaptive gate bias control circuit,” Electronics Letters Volume 32, Issue 17, pp. 1533 – 1535, 15 Aug. 1996.
[45] M. Ranjan, K.H. Koo, G. Hanington, C. Fallesen, P. Asbeck,” Microwave power amplifiers with digitally-controlled power supply voltage for high efficiency and high linearity,” Microwave Symposium Digest., 2000 IEEE MTT-S InternationalVolume 1, 11-16 pp. 493 - 496 vol.1, June 2000.
[46] Y.W. Kim; K.C. Han; S.Y. Hong; J.H. Shin,” A 45% PAE /18mA quiescent current CDMA PAM with a dynamic bias control circuit [power amplifier module” Radio Frequency Integrated Circuits (RFIC) Symposium, 2004. Digest of Papers. 2004 IEEE 6-8 pp. 365 – 368, June 2004.
[47] C. Tongchoi, M. Chongcheawchamnan, A. Worapishet, ” Lumped element based Doherty power amplifier topology in CMOS process,” Circuits and Systems, 2003. ISCAS ' 03. Proceedings of the 2003 International Symposium on Volume 1, 25-28 pp. I-445 - I-448 vol.1, May 2003.
[48] G. Hanington, P.F. Chen; P.M. Asbeck, L.E. Larson,” High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications,” Microwave Theory and Techniques, IEEE Transactions on Volume 47, Issue 8 pp.1471 – 1476, Aug. 1999.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2005-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明