以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:30 、訪客IP:3.12.73.149
姓名 彭俊傑(Jyun-Jie Pon) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 等效電路法與k-矩陣法在量子力學之探討
(Quantum-Mechanic Simulation using Equivalent-Circuit Method and k-matrix Method)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 我們在論文裡將使用兩種方法來模擬量子力學的系統。第一種方法被稱做k矩陣法,另一個方法則是等效電路法。我們使用這兩種方式來分析周期性的KP-model與非週期性的量子力學系統,由這兩種方式所得到的結果就是薛丁格波動方程式的波函數。另外,我們比較k矩陣法與等效電路法並且得到相同的結果,而我們也會說明這兩種方法的優點與缺點。 摘要(英) In the thesis, we will use two methods to simulate the quantum mechanical systems. The first way is called the k-matrix method, and the other way is the equivalent-circuit method. We use these two methods to analyze periodic KP-model and non-periodic QM systems. The result obtained by these ways is the wave function of the Schrödinger wave equation. Additionally, we will compare the k-matrix method with the equivalent-circuit method and show these results of the k-matrix method are same as the equivalent-circuit method. We will also show the advantages and disadvantages of these two methods. 關鍵字(中) ★ 薛丁格波動方程式
★ 量子力學關鍵字(英) ★ Schrödinger wave equation
★ KP-model
★ quantum mechanical論文目次 Contents
1. Introduction …………………………………………………………………………1
2. Two Solvers for Solving Schrödinger Equations………………………………3
2.1 Introduction …………………………………………………………………3
2.2 Equivalent-Circuit Model of Schrödinger Wave Equation……………4
2.3 The k-Matrix Method for Simultaneous Complex Equations …………7
2.4 The Splitting of Energy Level in Quantum Well………………………8
3. Simulation of Periodic Kronig-Penney Model…………………………………11
3.1 Introduction of KP-Model…………………………………………………11
3.2 Simulation Result of k-Matrix Method…… ……………………………16
3.3 Simulation Result of Equivalent-Circuit Method ……………………19
3.4 Discussion of Two Solvers…………………………………………………23
4. Simulation of Non-periodic Quantum Mechanics………………………………25
4.1 Simulation Result of a Potential Barrier ……………………………25
4.2 Simulation Result of One-Dimensional Well of Finite Depth………31
4.3 2-Dimentional Infinite Quantum Well……………………………………37
5. Conclusion……………………………………………………………………………40
List of Reference……………………………………………………………………..41參考文獻 Reference
[1] C. H. Kao, “An equivalent circuit model of quantum mechanics and its investigation to device simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China, Jun. 2004.
[2] J. W. Lee, “An equivalent circuit model for decoupled method in semiconductor device simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China, Jun. 2002.
[3] C. L. Teng, “An equivalent circuit approach to mixed-level device and circuit simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China, Jun. 1997.
[4] J. P. Mckelvey, Solid State and Semiconductor Physics, Chapter 4, 6, Robert E. Krieger, Inc., 1966.
[5] C. L. Lin, Modern Physics: Introduction of Solid State Physics, Chapter 5, Wu Nan, Inc., 2004.
[6] B. Arthur, Concepts of Modern Physics, New York: McGraw-Hill, 1995.
[7] A. K. Ghatak, K. Thyagarajan, M. R. Shenoy “A novel numerical technique for solving the one-dimentional Schrödinger equation using matrix approach-application to quantum well structures,” IEEE Journal on Quantum Electronics, vol.24, p.1524-1531, 1988.
[8] N. Zettili, Quantum mechanics : concepts and applications, New York : Wiley, 2001.指導教授 蔡曜聰(Yao-Tsung Tsai) 審核日期 2006-6-22 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare