參考文獻 |
Reference
[1] C. C. Paige, “Properties of numerical algorithms related to computing controllability,” IEEE Trans, Automat. Contr., vol. AC-26, pp. 130-138, Feb. 1981.
[2] R. Eising, “Between controllable and uncontrollable,” Syst., Contr. Lett., vol. 4, pp. 263-264, July. 1984.
[3] D. L. Boley and W. Lu, “Measuring how far a controllable system is from an uncontrollable one,” IEEE Trans, Automat. Contr., vol. AC-31, pp. 249-251, Feb. 1986.
[4] M. Wicks and R. DeCarlo, “On the distance to an uncontrollable pair: A survey,” in proc. 25th Annu. Allerton Conf. Communications, Control, Computing, 1987.
[5] C. Kenney and A. J. Laub, “Controllability and stability radii for companion form systems,” Math. Contr., Signals, Syst., vol. 1, pp. 239-256, 1988
[6] D. K. Lindner, J. Babendreier, and A. M. A. Hamdan, “Measures of controllability and observability and residues.” IEEE Trans, Automat. Contr., vol. 34, pp. 648-650, Feb. 1989.
[7] M. Wicks, “Computing the distance to an uncontrollable system,” IEEE Trans, Automat. Contr., vol. 36, pp. 39-49, Jan. 1991.
[8] M. Tarokh, “Measures for controllability, observability, and fixed modes,” IEEE Trans, Automat. Contr., vol. 37, pp. 1268-1237, Feb. 1992.
[9] L. Qiu, B. Bernhardsson, A. Rantzer, E. J. Davison, P. M. Young, and J. C. Dolye, “A formula for computation of the real stability radius,” Automatica, vol. 31, no. 6, pp.879-890, 1995.
[10] G. Hu and E. J. Davison, “Real Controllability/Stabilizability Radius of LTI Systems” IEEE Trans, Automat. Contr., vol. 49, pp. 254-257, Feb. 2004.
[11] B. W. Cheng and J. Zhang, “Robust Controllability for a Class of Uncertain Linear Time-Invariant MIMO Systems,” IEEE Trans. Automat. Contr., vol. 49, pp. 2022-2027, 2004.
[12] R. A. Horn and C. R. Johnson, “Matrix Analysis,.” Cambridge, U.K.: Cambridge Univ. Press, 1985.
[13] C. T. Chen, “Linear System Theory and Design,.” New York: CBS College Publishing, 1984.
[14] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, “Linear Matrix Inequalities in System and Control Theory,” SIAM: Philadelphis, PA, 1994.
[15] L.Dai, “Singular Control Systems,” Berlin, Germany: Springer-Verlag, 1989.
[16] C. Lin, J. L. Wang, D. H. Wang, and C. B. Soh, “Robustness of uncertain descriptor systems,” Syst. Contr. Lett., vol. 31, pp.129-138, 1997.
[17] C. Lin, J. L. Wang and C. B. Soh, “Necessary and sufficient conditions for the controllability of linear interval descriptor systems,” Automatica, vol. 34, pp. 363-367, 1998.
[18] C. Lin, J. L. Wang, G. H. Yang and C. B. Soh, “Robust C-Controllability and/or C-Observability for Uncertain Descriptor Systems with Interval Perturbations in All Matrices ,” IEEE Trans. Automat. Contr. vol. 44, pp.1768-1773, 1999.
[19] A. Ailon, “Controllability of generalized linear time-invariant systems,” IEEE Trans. Automat. Contr., vol. 32, pp. 429-432, 1987.
[20] J. C. Cobb, “Controllability, observability and duality in singular systems,” IEEE Trans. Automat. Contr., vol. 29, pp. 1076-1082, 1984.
[21] E. L. Yip and R. F. Sincovec, “Solvability, controllability and observability of continuous descriptor systems,” IEEE Trans. Automat. Contr., vol. 26, pp.702-706, 1981.
[22] C. Lin, X. K. Xie, “Controllable and observable modes of singular systems,” Proc 1995 12 Int Conf Syst Sci, v 1, Systems Theory Control Theory, p 492, 1995
[23] Q. L. Zhang et al., Further comments on “controllability of descriptor systems,” Interna., J. Control, vol. 50, pp. 2645-2646, 1989.
[24] M. Hou and P. C. Müller, “Causal observability of descriptor systems,” IEEE Trans. Automat. Contr., vol. AC-44, pp.158-163, 1999.
[25] T. Kaczorek, “Sufficient conditions for impulse uncontrollability and impulse unobservability of singular systems,” IEEE Trans. Automat. Contr., vol. AC-33, pp. 1174-1176, 1988.
[26] Chi-Jo Wang, “Controllability and Observability of Linear Time-Varying Singular Systems,” IEEE AC, vol. 44, pp. 1901-1905, 1999.
[27] Chi-Jo Wang and Ho-En Liao, “Impulse observability and impulse controllability of linear time-varying singular systems”, Automatica, vol. 37, pp. 1876-1872, 2001.
[28] J. Wei and W. Song, “Controllability of singular systems with control delay,” Automatica, vol. 37, pp.1873-1877, 2001.
[29] G. Xie and L. Wang, “Controllability of linear descriptor systems,” IEEE CAS I, vol. 50, pp.455-460, 2003.
[30] J. Y. Ishihara and M. H. Terra, “Impulse controllability and observability of rectangular descriptor systems,” IEEE Trans. Automat. Contr., vol. 46, pp. 991-994, 2001.
[31] Y. Z. Hu and E. J. Davison, “A study of the stability radius for descriptor systems,” in Proc. 35th IEEE Conf. Decision Contr., pp. 4256-4261, 1996.
[32] G. C. Verghese, B. C. Levy, and T. Kailath, “A generalized state-space for singular systems,” IEEE Trans. Automat. Contr., vol. 26, pp.811-831, 1981.
[33] Z. Zhou, M. A. Shayman, and T. J. Tam, “Singular systems: A new approach in the time domain,” IEEE Trans. Automat. Contr., vol. 32, pp. 42-50, 1987.
[34] K. Wang and A. N. Michel, “Necessary and sufficient conditions for the controllability and observability of a class of linear time-invariant systems with interval plants,” IEEE Trans. Automat. Contr., vol. 39, pp. 1443-1447, 1994.
[35] F. L. Lewis, “A survey of linear singular systems,” Circuits Syst. Sig. Proc., vol. 5, no. 1, pp. 3-36, 1989.
[36] B. C. Kuo, “Automatic Control System,” Sixth Edition, Prentice Hall, NewJersy, 1991.
[37] B. C. Kuo, “Automatic Control Systems,” Seventh Edition, Wiley, 1997.
[38] G. F. Franklin, J. D. Powell and E. N. Abbas, “Feedback Control of Dynamic Systems,” Third Edition, Addison Wesley, 1994. |