博碩士論文 92522051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.226.166.121
姓名 吳居穆(Chu-Mu Wu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用轉換狀態圖及模型建立進行人體運動姿勢辨識
(Model based human motion recognition using transition diagram)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 一個以膚色為基礎之互補人臉偵測策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電腦視覺的應用,一直都是相當熱門,也有許多相關的應用,近十年來,研究者對於辨識分析人體的動作或行為更是感興趣,目前可以應用的相關領域大致有虛擬實境:例如製作動畫角色的模擬;智慧型監控系統:可以節省人力的支出;高級人機介面:可以用手勢操作系統等。
而目前人體運動姿勢的辨識方法大致上可以分為兩類,第一種為模型建立方法,會將人體影像套上一個定義好的幾何模型或是輪廓模型,其缺點是容易受背景雜訊影響,需要有較良好的前景物影像來進行處理。第二種方式則是不需套入定義的人體模型,主要是利用輪廓比對,或是在輸入影像後,擷取特徵點來進行訓練和辨識,其缺點是特徵向量若太大,會使運算不易處理,也由於沒有事先定義好的運動模式,會不容易描述目前所進行的運動或行為。
基於上述的理由,本研究希望能夠結合兩種不同方式的優點,首先建立一個定義好的人體模型,接著在這個模型上,進行特徵的抽取,由於在定義的模型上擷取特徵,可以有效縮減特徵向量的複雜度,另外一方面,由於是利用擷取後的特徵向量來進行訓練和辨識,因此對於前景物影像,也可以有較穩定的處理效果;而人體運動大致上是平順進行轉換,例如直立走路,接著蹲下,然後再趴下或跌倒,而不會突然由趴下的動作突然變成直立行走,因此設計一個運動姿勢的轉換狀態圖,來描述實驗中運動姿勢的轉換,希望能夠提高辨識的準確度,實驗結果證明了本研究所提出之方法對於人體運動姿勢的辨識,具有良好的準確度。
摘要(英) During the past decade, the technique of computer vision has been widely applied in several fields. Typical applications include virtual reality, intelligent surveillance system, human-interface, etc. There are two categories of human motion recognition approaches including model based and non-model based. Model based approach usually fits the given image or blob to a shape model, which represents joint parts and human body parts. One has to segment images into different parts, such as head, torso, arms, and legs. The drawback of this approach is that it needs more stable foreground segmentation. As to non-model based approach, it extracts features from the image, and the correspondence between consecutive frames is obtained based on estimation or prediction of features relating to shape, texture, and colors. The drawback of this kind of approach is that it is difficult to define the activity because of the lacking of pre-defined model.
In this thesis, the two approaches are combined. First, we use a pre-defied model, and features are extracted from different regions in this model. In this way, the complexity of features can be reduced due to the utilization of segmented images and the system can still perform well even if the foreground image is not stable. Human motions, like walking and crawling, usually transfer smoothly in each state. Hence, a transition diagram is designed to describe the transition between different motions. Experiments were conducted and results reveal the validity of our proposed approach.
關鍵字(中) ★ 視訊監控
★ 目標物偵測
★ 姿勢辨識
關鍵字(英) ★ Video Surveillance
★ motion recognition
★ object detection
論文目次 Abstract i
摘要 ii
誌謝 iii
目錄 iv
附圖目錄 vi
表格目錄 vii
第一章 緒 論 1
1.1 研究動機 1
1.2 相關研究 2
1.3 系統簡介 4
1.4 論文架構 5
第二章 前景物偵測 6
2.1 建立背景 6
2.2 前處理 8
2.2.1 型態學運算 9
2.2.2 連通元件分析 10
2.2.3 陰影去除 11
2.3 前景物追蹤 13
第三章 人體運動姿勢辨識 17
3.1 人體模型 18
3.2 特徵抽取 19
3.3 特徵資料分類 20
3.4 轉換狀態圖 23
第四章 實驗結果 27
4.1 實驗環境 27
4.2 實驗結果 27
4.2.1 背景建立 27
4.2.2 前處理 29
4.3 辨識結果 30
4.3.1 運動姿勢辨識 30
4.3.2 辨識率 32
第五章 結論與未來工作 37
5.1 結論 37
5.2 未來工作 38
參考文獻 39
參考文獻 [1] I. Haritaoglu, D. Harwood and L.S. Davis, “W4: Real-time
surveillance of people and their activities”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 22, No. 8, pp.
809-830, 2000.
[2] L.S. Davis, D. Harwood, and I. Haritoaglu., “Ghost: A human body
part labeling system using silhouettes.”, in Proc. ARPA Image
Understanding Workshop, pp. 229–235, 1998.
[3] A. Ali and J.K. Aggarwal, “Segmentation and recognition of
continuous human activity”, in IEEE Workshop on Detection and
Recognition of Events in Video, pp. 28--, 2001.
[4] R. Cucchiara, C. Grana, A. Prati, and R. Vezzani, “Probabilistic
posture classification for human-behavior analysis”, IEEE
Transactions on Systems, Man, and Cybernetics, Part A 35(1): 42-54,
2005.
[5] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time
sequential images using hidden Markov model.”, in Proc. of IEEE
Conference on Computer Vision and Pattern Recognition, pp.
379--385, 1992.
[6] J. Freer, B. Beggs, F. Chevriet and A. Goryashko, "Automatic
recognition of suspicious activity for camera based security systems.",
in IEE Proceedings of European Convention on Security and
Detection, no. 4018, pp. 54-58, 1995.
40
[7] C. Wren, A. Azarbayejani, T. Darrell and A. Pentland, “Pfinder:
Real-time tracking of the human body”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 780-785, 1997.
[8] D. Gutchess, M. Trajkonic, E. Cohen-Solal, D. Lyons , and A.K.Jain,
“A background model initialization algorithm for video surveillance.”,
Proc. of the 8th IEEE Int'l Conf. on Computer Vision., pp. 733-740,
2001.
[9] 蘇木春, 張孝德, “機器學習:類神經網路、模糊系統以及基因演
算法則”, 全華科技圖書股份有限公司, 2003
[10] D. Gavrila, “The visual analysis of human movement: A survey.”,
Computer Vision and Image Understanding, 73(1):82-98, 1999.
[11] A. Cavallaro, O. Steiger and T. Ebrahimi, “Tracking video objects in
cluttered background”, IEEE Transactions on Circuits and Systems for
Video Technology, VOL. 15, NO. 4, 2005.
[12] A. Senior, “Tracking with probabilistic appearance models”, in ECCV
Workshop on Performance Evaluation of Tracking and Surveillance
Systems, pp. 48–55, 2002.
指導教授 范國清(Kuo-Chin Fan) 審核日期 2007-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明