博碩士論文 92541002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:3.135.190.107
姓名 黃凡修(Fan-Hsiu Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用高階除數操作之注入式鎖態振盪器於微波/毫米波訊號源應用
(Injection-Locked Oscillators with High-Order-Division Operation for Microwave/Millimeter-wave Signal Generation)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微波/毫米波通訊系統近年來已廣泛的使用在行動通訊、光纖通訊及區域網路相關的應用上,為了系統中能擁有穩定低相位雜訊且低成本之信號源,注入式鎖態振盪器漸漸地被實際使用。在本論文中,我們探討注入式鎖態振盪器的基本原理,透過相關的注入式鎖態模型運用與推導來了解其鎖態機制、鎖態範圍、高階注入操作及相位雜訊等特性,利用這些原理來設計製作適合於微波或毫米波操作之高階注入鎖態振盪器。
使用基諧波、次諧波及高諧波注入方式,在本論文透過CMOS 及 GaAs pHEMT製程與高頻電晶體模型的模擬,設計出相關電路用以產生60 GHz振盪源與100 GHz除頻器,並實作出寬鎖態範圍、低相位雜訊及低功率耗損特性的注入式鎖態振盪器。此外,我們亦利用高階注入除數為4的除頻器來實作一30 GHz類比式鎖相迴路;在已知的基本迴路元件量測特性下,設計出整合式鎖相迴路積體電路,並實測出擁有低功率損耗及低相位雜訊等優良特性,以驗證注入式鎖態除頻器可應用於實際的鎖相迴路或頻率合成器。
摘要(英) In order to obtain a reference signal with a low phase noise, high frequency stability, and low cost for the microwave/millimeter-wave applications, the injection-locked oscillators have been widely used in the wireless, optics, and local network systems. In this thesis, the theory of injection locking is introduced to investigate the mechanism about the characteristics of the locking range, high-order harmonic injection, and the phase noise in injection-locked oscillator. With the injection-locked models, the behavior of injection locking is therefore understood for injection-locked oscillator designs.
Based on the methods of fundamental, sub-, and super-harmonic injections, the relative millimeter-wave injection locking circuits have been achieved and fabricated by using CMOS and GaAs pHEMT techniques. The 60 GHz injection-locked oscillators and the 100 GHz injection-locked frequency divider are fulfilled with the good performances of low phase noise, wide locking range, and low power consumption through the simulations with the high-frequency transistor model. In addition, a 30 GHz analogy phase-locked loop using a divided-by 4 ring-type injection-locked frequency divider has also been designed and achieved by using 0.5 μm E/D mode GaAs pHEMT. Utilizing the known experiment results from the each function circuits such as the voltage-controlled oscillator, phase detector, dc amplifier within a loop filter, the 30 GHz PLL was successfully integrated to be a MMIC for Ka-band communication systems. This circuit proves that the injection-locked frequency divider can embedded in the PLL chip with a fine characteristic.
關鍵字(中) ★ 注入式鎖態
★ 微波/毫米波振盪器
★ 鎖相迴路
關鍵字(英) ★ injection-locked
★ microwave/millimeter-wave oscillator
★ phase-locked loop
論文目次 Abstract
Figure captions
Table captions
Chapter 1 Introductions
Chapter 2 Characteristics of Injection-Locked Oscillators
2.1 Introduction of Injection Locking
2.2 Injection Locking Behavior
2.2.1 Super-harmonic Injection
2.2.2 Sub-harmonic Injection
2.3 Models of Injection-Locked Oscillator
2.4 Locking Range
2.5 Phase Noise
2.6 Summary
Chapter 3 High-Order Division Characteristic of Injection-Locked Frequency Divider
3.1 Introduction
3.2 High-Order Division Injection-Locked Oscillator
3.3 Ring-Type Injection-Locked Frequency Divider using E/D Mode pHEMT Technique
3.4 Summary
Chapter 4 Millimeter-wave Injection-Locked Oscillator Circuits
4.1 Introduction
4.2 V-Band CMOS Injection-Locked Oscillator using Fundamental Harmonic Injection
4.2.1 V-band CMOS Injection-Locked Oscillator Circuit Design
4.2.2 Measurement results
4.3 V-band GaAs pHEMT Cross-Coupled Sub-harmonic Oscillator
4.3.1 V-band Sub-harmonic Oscillator Circuit Description
4.3.2 Measurement Results
4.4 W-band Injection-Locked Frequency Divider using Cascode Circuit Topology
4.4.1 W-band Injection-Locked Frequency Divider Circuit Description
4.4.2 Measurement Results
4.5 Summary
Chapter 5 Design of Phase-Locked Loop Circuit using High-Order Harmonic Injection-Locked Frequency Divider
5.1 Introduction
5.2 Performance of Phase-Locked Loop
5.2.1 Loop Characteristics
5.2.2 Noise Characteristic
5.2.3 Working Range
5.2 Function Blocks of Integrated PLL
5.2.1 Voltage-Controlled Oscillator
5.2.2 Ring-Type Injection-Locked Frequency Divider
5.2.3 Phase Detector
5.2.4 DC Amplifier and Loop Filter
5.4 Simulation of Integrated Phase-Locked Loop
5.5 PLL Measurement Results
5.6 Summary
Chapter 6 Conclusions and Future Work
References
Publication List
參考文獻 [1]H. R. Rategh and T. H. Lee, “Superharmonic Injection-Locked Frequency Dividers, IEEE J. Solid-State Circuits, vol. 34, no. 6, pp.813-821, Jun. 1999.
[2]S. Kudszus, T. Berceli, A. Tessmann, M. Neumann, and W. H. Haydl, “W-band HEMT Oscillator MMICs using Subharmonic Injection Locking”, IEEE Trans. on Microwave Theory and Techniques, vol. 48, no. 12, pp.2526-2532, Dec. 2000.
[3]J. F. Buckwalter, A. Babakhani, A. Komijani, and A. Hajimiri, “An Integrated Subharmonic Coupled-Oscillator Scheme for a 60-GHz Phased-Array Transmitter”, IEEE Trans. on Microwave Theory and Techniques, vol. 54, no. 12, pp.4271-4280, Dec. 2006.
[4]R. Adler, “A study of Locking Phenomena in Oscillators”, Proceedings of the IEEE, vol. 61, no. 10, pp.1380-1385, Oct. 1973.
[5]V. Uzunoglu and M. H. White, “The Synchronous Oscillator: A Synchronization and Tracking Network”, IEEE J. Solid-State Circuits, vol. sc-20, no. 6, pp.1214-1226, Dec. 1985.
[6]K. Kamogawa, T. Tokumitsu, and M. Ailawa, “Injection-Locked Oscillator Chain: A Possible Solution to Millimeter-Wave MMIC Synthesizers”, IEEE Trans. on Microwave Theory and Techniques, vol. 45, no. 9, pp.1578-1584, Sep. 1997.
[7]D. J. Sturzebecher, X. Zhou, X. S. Zhang, and A. S. Daryoush, “Optically Controlled Oscillators for Millimeter-Wave Phased Array Antennas”, IEEE Trans. on Microwave Theory and Techniques, vol. 41, no. 6/7, pp.998-1004, Jun./Jul.. 1993.
[8]A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and Design of Injection-Locked LC Divider for Quadrature Generation”, IEEE J. Solid-State Circuits, vol. 39, no. 9, pp.1425-1433, Sep. 2004.
[9]P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection-Locking Scheme for Precision Quadrature Generation”, IEEE J. Solid-State Circuits, vol. 37, no. 7, pp.845-851, Jul. 2002.
[10]Sander L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A Low-Phase-Noise 5 GHz CMOS Quadrature VCO using Superharmonic Coupling”, IEEE J. Solid State Circuits, vol. 38, no. 7, pp. 1148-1154, Jul. 2003.
[11]A. C. Bordonalli, C. Walton, and A. J. Seeds, “High Performance Phase Locking of Wide Linewidth Semiconductor Lasers by Combined Use of Optical Injection Locking and Optical Phase-Lock Loop”, IEEE J. Lightwave Technology, vol. 17, no. 2, Feb. 1999.
[12]Y. Tajima, “GaAs FET Applications for Injection-Locked Oscillator and Self-Oscillating Mixers”, IEEE Trans. on Microwave Theory and Techniques, vol. MTT-27, no. 7, pp.629-632, Dec. 1979.
[13]Y. Chen and Z. Chen, “A Dual-Gate FET Subharmonic Injection-Locked Self-Oscillating Active Integrated Antenna for RF Transmission”, IEEE Microwave and Wireless Components Letters, vol. 13, no. 6, pp.199-201, Jun. 2003.
[14]H. Kamitsuna, T. Shibata, K. Kurishima, and M. Ida, “Direct Optical Injection Locking of InP/InGaAs HPT Oscillator ICs for Microwave Photonics and 40 Gb/s-Class Optoelectronic Clock Recovery”, IEEE Trans. on Microwave Theory and Techniques, vol. 50, no. 12, pp.3002-3008, Dec. 2002.
[15]K. Kurokawa, “Injection locking of microwave solid-state oscillators”, Proc. IEEE, vol. 61, pp.1336-1410, Oct. 1973.
[16]L. J. Paciorek, “Injection locking of oscillators,” Proc. IEEE, vol. 53, pp.1723–1727, Nov. 1965.
[17]H. L. Stover, “Theoretical explanation of the output spectra of unlocked driven oscillators,” Proc. IEEE, vol. 54, pp. 310–311, Feb. 1966.
[18]M. Armand, “On the output spectrum of unlocked driven oscillators,” Proc. IEEE, vol. 59, pp. 798–799, May 1969.
[19]M. Tiebout, “A CMOS Direct Injection-Locked Oscillator Topology as High-Frequency Lo-Power Frequency Divider”, IEEE J. Solid-State Circuits, vol. 39, no. 7, pp.1170-1174, Jul. 2004.
[20]B. Razavi, “A Study of Injeciton Locking and Pulling in Oscillators”, IEEE J. Solid-State Circuits, vol. 39, no. 9, pp.1415-1424, Sep. 2004.
[21]B. Mesgarzadeh, A. Alvandpour, “First-Harmonic Injection-Locked Ring Oscillaotrs”, IEEE 2006 Custom Integrated Circuits Conference, pp.733-736, 2006.
[22]J. Jeong, and Y. Kwon, “Injeciton-Locked Push-Push Oscillator at 72 GHz Band using Cross-Coupled HEMTs”, European Microwave Conference, pp. 587-590, 2003.
[23]A. S. Daryoush, T. Berceli, R. Saedi, P. R. Herczfeld, and A. Rosen, “Theory of Subharmonic Synchronization of Nonlinear Oscillator”, IEEE MTT-S Digest, pp.735-738, 1989.
[24]X. Zhang, X. Zhou, B. Aliener, and A. S. Daryoush, “A Study of Subharmonic Injection Locking for Local Oscillator”, IEEE Microwave and Guided Wave Letters, vol. 2, no. 3, pp.97-99, Mar. 1992.
[25]X. Zhang, X. Zhou, and S. Daryoush, “A Theoretical and Experimental Study of the Noise Behavior of Subharmonically Injection Locked Local Oscillators”, IEEE Trans. on Microwave Theory and Techniques, vol. 40, no. 5, pp.895-902, May. 1992.
[26]J. Y. Lee and U. S. Hong, “Push-push Subharmonically Injection-Locked Oscillator”, Electronics Letters, vol. 32, no.19, pp.1792-1793, 1996.
[27]H. Ahmed, C. DeVries, and R. Mason, “A Digitally Tuned 1.1 GHz Subharmonic Injection-Locked VCO in 0.18 um CMOS”, European Solid-State Circuits Conference, pp.81-84, 2003.
[28]E. Suematsu, M. Yagura, A. Yamada, K. Kishimoto, Y. Zhu, J. K. Twynam, K. Sakuno, T. Hasegawa, M. Hasegawa, H. Sato, “Millimeter-wave HBT MMIC Synthesizers using Subharmonically Injection-Locked Oscillators”, Gallium Arsenide Integrated Circuit Symposium, pp.271-274, 1997.
[29]S. H. Lee, S. L. Jang, Y. H. Chuang, J. J. Chao, J. F. Lee, and M. H. Juang, “A Low Power Injection Locked LC-Tank Oscillator With Current Reused Topology”, IEEE Microwave and Wireless Components Letters, vol. 17 no. 3, pp.220-222, Mar. 2007.
[30]S. Desgrez, M. Gayral, O. Llopis, J. C. Cayrou, J. L. Cazauz, and J. F. Sautereau, “Wide-Bandwidth Ku-band Monolithic Analog Frequency Divider”, IEEE Microwave and Guided Wave Letters, vol. 8, no. 2, pp.84-86, Feb. 1998.
[31]P. Nuchter and W. Menzel, “A Novel Frequency Divider Configuration for Micro- and Millimeter-Wave Signals”, IEEE Microwave and Guided Wave Letters, vol. 6, no. 7, pp.265-267, Jul. 1996.
[32]S. Kudszus, W. H. Haydl, M. Neumannn, and M. Schlechtweg, “94/47 GHz Regenerative Frequency Divider MMIC with Low Conversion Loss”, IEEE J. Solid-State Circuits, vol. 35, no. 9, pp.1312-1316, Sep. 2000.
[33]A. Bonfanti, A. Tedesco, C. Samori, and A. L. Lacaita, “A 15 GHz Broad-Band ÷2 Frequency Divider in 0.13um CMOS for Quadrature Generation”, IEEE Microwave and Wireless Components Letters, vol. 15 no. 11, pp.724-726, Nov. 2005.
[34]K. Yamamoto, and M. Fujishima, “A 44-
指導教授 詹益仁(Yi-Jen Chan) 審核日期 2007-10-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明