參考文獻 |
References
[1] R. M. Rangayyan, “Biomedical Signal Analysis: A Case-Study Approach,” New York: Wiley Inter-Science, 2001.
[2] J. Pan, and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE Trans. Biomed. Eng., BME-32, no. 3, pp. 230-236, 1985
[3] C. W. Li, C. X. Zheng, and C. F. Tai, “Detection of ECG characteristic points using wavelet transform”, IEEE Trans. Biomed. Eng., vol. 42, no. 1, pp. 21-28, 1995
[4] D. Benitez, P.A. Gaydecki, A. Zaidi, and A.P. Fitzpatrick, “The use of the Hilbert transform in ECG signal analysis,” Computers in Biology and Medicine, vol. 31, pp. 399-406, 2001.
[5] G. Vijaya, V. Kumar, and H. K. Verma, “ANN-based QRS-complex analysis of ECG,” J. Med. Eng. Technol., vol. 22, no. 4, pp. 160-167, 1998.
[6] L. Keselbrener, M. Keselbrener, and S. Akselrod, “Nonlinear high pass filter for R-wave detection in ECG signal,” Med. Eng. Phys. vol. 19, no. 5, pp. 481-484, 1997.
[7] Z. Dokur, T. Olmez, E. Yazgan, and O. K. Ersoy, “Detection of ECG waveforms by neural networks,” Med. Eng. Phys. vol. 19, no. 8, pp. 738-741, 1997
[8] S. Kadambe, R. Murray, and G. F. Boundreaux-Bartels, “Wavelet transform-based QRS complex detector,” IEEE Trans. Biomed. Eng., vol. 46, no. 7, pp. 838-848, 1999
[9] V. X. Afonso, W. J. Tomkins, T. Q. Nguyen, and S. Luo, “ECG beat detection using filter banks,” IEEE Trans. Biomed. Eng., vol. 46, no. 2, pp. 192-202, 1999
[10] K. V. Suarez, J. C. Silva, Y. Berthoumieu, P, Gomis, and M. Najim, “ECG Beat Detection Using a Geometrical Matching Approach ,” IEEE Trans. Biomed. Eng., vol. 54, no. 4, pp. 641-650, 2007
[11] X. Xu, and Y. Liu, “ECG QRS complex detection using slope vector waveform (SVW) algorithm,” 26th Int. Conf of the IEEE EMBS, pp. 3597-3600, 2004.
[12] F. Gritzali, G. Frangakis, and G. Papakonstantinou, “Detection of the P and T waves in an ECG,” Computers and Biomedical Research, vol. 22, pp. 83-91, 1989
[13] S. J. Hengeveld, and J. H. Van Bemmel, “Computer detection of P waves”, Computers and Biomedical Research, vol. 9, pp. 125-132, 1976.
[14] R. A. Dufault and A. C. Wilcox, “Dual channel P-wave detection in the surface ECG via the LMS algorithm,” in Proc. IEEE/8th Ann. Conf. Eng. Med. Biol. Soc., pp. 325-328, 1986.
[15] Y. Zhu, and N. V. Thakor, “P-wave detection by adaptive cancellation of QRS-T complex,” in Proc. IEEE/8th Ann. Conf. Eng. Med. Biol. Soc., pp. 329-331, 1986.
[16] I. Christov, G. Gómez-Herrero, V. Krasteva, I. Jekova, A. Gotchev and K. Egiazarian, “Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification,” Med. Eng. Phys., vol. 28, pp. 876-887, 2006.
[17] P. Chazal, M. O’Dwyer, and R.B. Reilly, “Automatic classification of heart-beats using ECG morphology and heartbeat interval features,” IEEE Trans. on Biomed. Eng., vol. 51, pp. 1196-1206, 2004
[18] R. D. Throne, J. M. Jenkins, and L. A. Dicarlo, “A comparison of four new time domain techniques for discriminating monomorphic ventricular tachycardia from sinus rhythm using ventricular waveform morphology,” IEEE Trans. on Biomed. Eng., vol. 38, pp. 561-570, 1991
[19] F. Pannizzo and S. Furman, “Frequency spectra of ventricular tachycardia and sinus rhythm in human intracardiac electrograms: Application to tachycardia for cardiac pacemakers,” IEEE Trans. on Biomed. Eng., vol. 35, pp. 421-425, 1998
[20] V.X. Afonso, W.J. Tomkins, T.Q. Nguyen, and S. Luo, “ECG beat detection using filter banks,” IEEE Trans. on Biomed. Eng., vol. 46, pp. 192-202, 1999
[21] D.Benitez, P.A. Gaydecki, A. Zaidi, and A.P. Fitzpatrick, “The use of the Hilbert transform in ECG signal analysis,” Comput. Biol. Med., vol. 31, pp. 399-406, 2001.
[22] A. Koski, “Modelling ECG signals with Hidden Markov Models,” Artif. Intel. Med., vol. 8, pp. 453-471, 1996
[23] M. Shahram and K. Nayebi, “ECG beat classification based on a Cross-Distance analysis,” International Symposium on Signal Processing and its Applications, ISSPA-2001, Malaysia, pp. 234-237.
[24] P. Laguna, R. Jane, S. Olmos, N.V. Thakor, H. Rix, and P. Caminal, “Adaptive estimation of QRS complex wave features of ECG signal by the Hermite model,” Med. Biol. Eng. Comput., vol. 34, pp. 58-68, 1996.
[25] Z.Dokur, T.Olmez, E.Yazgan, and O.K.Ersoy, “Detection of ECG waveforms by neural networks,” Med. Eng. Phys., vol. 19, pp. 738-741, 1997.
[26] Z.Dokur, and T.Olmez, “ECG beat classification by a novel hybrid neural network“, Computer Methods and Programs in Biomedicine, vol. 66, pp. 167-181, 2001.
[27] H.G. Hosseini, D. Luo, and K.J. Reynolds, “The comparison of different feed forward neural network architectures for ECG signal diagnosis,” Med. Eng. Phys., vol.28, pp. 372-378, 2006
[28] Y.P. Meau, F. Ibrahim, S.A.L. Narainasamy, and R. Omar, “Intelligent classification of ECG signal using extended EKF based neural fuzzy system,” Computer Methods and Programs in Biomedicine, vol. 82, pp. 157-168, 2006.
[29] M. Lagerholm, G. Peterson, G. Braccini, L. Edenbrandt, and L. Sornmo, “Clustering ECG complex using Hermite functions and self-organizing maps”, IEEE Trans. Biomed Eng., vol. 47, pp. 838-848, 2000.
[30] E. Avci and Z. H. Akpolat, “Speech recognition using a wavelet packet adaptive network based fuzzy inference system”, Expert Systems with Applications, vol. 31, pp. 495-503, 2006
[31] J. D. Wu, and T. R. Chen, “Development of a drowsiness warning system based on the fuzzy logic images analysis”, Expert Systems with Applications, vol. 34, pp. 1556-1561, 2008.
[32] A. Celikyilmaz et al. “Increasing accuracy of two-class pattern recognition with enhanced fuzzy functions”, Expert Systems with Applications, vol. 36, pp. 1337-1354, 2009
[33] J. Yim, and H. Mitchell, “Comparison of country risk models: hybrid neural networks, logit models, discriminant analysis and cluster techniques”, Expert Systems with Applications, vol. 28, pp. 137-148, 2005.
[34] M. Anandarajan, and A. Anandarajan, “A comparison of machine learning techniques with a qualitative response model for auditor’s going concern reporting”, Expert Systems with Applications, vol. 16, pp. 385-392, 1999.
[35] J.C. Dunn, “A fuzzy relative of the ISODATA process and its use in detecting compact Well-Separated clusters”, Journal of Cybernetics, vol. 3, pp. 32-57, 1973
[36] J.C. Bezdek, “Pattern recognition with fuzzy objective function algorithms”, New York, Plenum Press, 1981
[37] J. F. Yang, S. S. Hao, and P. C. Chung, “Color image segmentation using fuzzy C-means and eigenspace projections”, Signal Processing, vol. 82, pp. 461-472, 2002
[38] A. B. Goktepe, S. Altun, and A. Sezer, “Soil clustering by fuzzy c-means algorithm”, Advances in Engineering Software, vol. 36, pp. 691-698, 2005.
[39] G. Beliakov, and M. King, “Density based fuzzy c-means clustering of non-convex patterns”, European Journal of Operational Research, vol. 173, pp. 717-728, 2006.
[40] Y.C. Yeh, and W.J. Wang, “QRS complexes detection for ECG signal: The Difference Operation method”, Computer Methods and Programs in Biomedicine, vol. 91, pp. 245-254, 2008.
[41] E. Y. Deeba, and A. D. Korvin, “On a fuzzy difference equation”, IEEE Trans. Fuzzy Systems, vol. 3, pp. 469-473, 1995.
[42] MIT-BIH database distribution, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, 1998.
[43] Z. D. Zhao, and Y. Q. Chen, “A New Method for Removal of Baseline Wander and Power Line Interference in ECG Signals”, Proceeding of the 5th International Conference on Machine Learning and Cybernetics, Dalian, vol. 13, pp. 4342-4347, 2006.
[44] G. M. Friesen, T. C. Jannett, M. A. Jadallah, S. L. Yates, S.R. Quint, and H. T. Nagle, “A comparison of the noise sensitivity of nine QRS detection algorithm,” IEEE Trans. Biomed. Eng., vol. 37, no. 1, pp. 85-98, 1990
[45] P. Raphisak, S. C. Schuckers, and A. J. Curry, “An Algorithm for EMG Noise Detection in Large ECG Data”, Computers in Cardiology, vol. 31, pp. 369-372, 2004
[46] P. S. Hamilton, and M. G. Curley, “Comparison of Methods for Adaptive Removal of Motion Artifact,” Computers in Cardiology, vol. 27, pp. 383-386, 2000.
[47] B. U. Kohler, C. Henning, and R. Orglmeister, “The Principles of Software QRS Detection, IEEE Engineering in Medicine and Biology, vol. 21, no. 1, pp. 42-57, 2002.
[48] F. Pattarin”, S. Paterlini, and T. Minerva, Clustering financial time series: An application to mutual funds style analysis, Computational Statistics and Data Analysis, 2004.
[49] H. Ren, and Y. L. Chang, “Feature extraction with modified Fisher’s linear discriminant analysis”, Proc. SPIE-5995, pp. 56-62, 2005
[50] T. S. Lin, and J. Meador, “Statistical feature extraction and selection for IC test pattern analysis,” Proc. Circuits and systems, pp. 391-394, 1992.
[51] P. J. G. Lisboa, R. Mehri-Dehnavi, “Sensitivity methods for variable selection using the MLP,” International Workshop on Neural Networks for Identification, Control, Robotics and Signal/Image, pp. 330-338, 1996.
[52] M. Dash, and H. Liu, “Feature selection for classification,” Intelligent Data Analysis, vol. 1, pp. 131-156, 1997
[53] Y. Zigel, A. Cohen, and A. Katz, “The weighted diagnostic distortion (WDD) measure for ECG signal compression,” IEEE Trans. on Biomed. Eng., vol. 47, pp. 1422-1430, 2000
[54] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility”, Fuzzy Sets and Systems, vol. 1, 1978.
[55] J. F. Hair, Jr., B. Black, B. Babin, R. E. Anderson, and R. L. Tatham, Multivariate Data Analysis, 6th ed., Prentice Hall, 2005
[56] R. A. Johnson, and D. W. Wichern, Applied Multivariate Statistical Analysis, New Jersey: Pearson Prentice Hall, 2007.
[57] W. C. Chen, and M. S. Wang, “A fuzzy c-means clustering-based fragile watermarking scheme for image authentication”, Expert System with Application, vol. 36, pp. 1300-1307, 2009
[58] I. Jekova, G. Bortolan, and I. Christov, “Assessment and comparison of different methods for heartbeat classification”, Medical Engineering and Physics, vol. 30, pp. 248-257, 2008.
[59] M. Engin, M. Fedakar, E.Z. Engin, and M. Korurek, “Feature measurements of ECG beats based on statistical classifiers”, Measurement, vol. 40, pp. 904-912, 2007
|