以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:32 、訪客IP:18.216.42.122
姓名 江逸凡(Yi-Fan Jiang) 查詢紙本館藏 畢業系所 化學學系 論文名稱 寡聚噻吩分子薄膜於不同基材表面的位向結構研究及其場效電晶體試製
(The Study of molecular orientation of oligothiophene films on various surfaces and the preparationof thin film transistors)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本篇主要分為兩部份,第一部份以寡聚噻吩分子為材料,以真空蒸鍍於金屬、氧化銀與不同自組裝單層膜之基材上,藉由反射式紅外線光譜與X-ray繞射光譜研究寡聚噻吩分子於不同基材上之堆疊位向結構研究。第二部份則是以α-六聯噻吩為材料,於二氧化矽與自組裝單層膜兩種基材表面上製備有機膜,藉由原子力電子顯微鏡與X-ray繞射儀觀察有機膜之表面型態與分子排列;再次於有機膜層上方蒸鍍電極做成有機場效電晶體元件,並藉由參數分析儀之量測分析元件製備的效果。
第一部份的研究結果顯示,寡聚噻吩分子於金屬表面上呈現近似於平躺表面方向堆疊,而於氧化銀與自組裝單層膜上則呈現站立的方式在表面堆疊。第二部份的研究結果發現α-六聯噻吩分子於二氧化矽與自組裝單層膜表面上雖然都是呈現站立的堆積型態,但於自組裝單層膜表面上則有較好的結晶性排列,而在電性量測也發現於在其表面上有較大的載子移動率。另一方面,若將α-六聯噻吩蒸鍍於刷磨之自組裝單層膜表面上,則可在表面上得到覆蓋面積更大之晶體而得到較高的載子遷移率。
此外,我們於第一部份與第二部份均有增加基材升溫的條件,這個條件可以使有機分子產生更好的結晶性排列。摘要(英) The thesis is divided into two parts. One is about the growth of oligothiophene films by thermal evaporation on metal surfaces and modified metal surfaces such as self-assembled monolayer(SAM) modified silver surface and native silver oxide surface. Their stacking orientation was investigated by reflection absorption IR(RAIR) and Powder X-ray Diffraction spectra (XRD).The other is about
α-sexithiophene thin film on silicon oxide and SAM modified surfaces,as the channel material in the fabrication of organic field effect transistors. The surface morphology and molecular orientation of the thin films were studied by Atomic Force Microscopy(AFM) , Powder X-ray Diffraction (XRD),and then field effect carrier mobilities were measured by Parameter Analyzer.
In the first part of our research, it was observed that the molecules stacked parallel to the clean silver metal surface, but on silver oxide and SAM-modified surface, they stacked perpendicular to the surface. In the second part of our research, although α-sexithiophene molecules oriented perpendicular to the silicon oxide and SAM surfaces, the films on SAM exhibit higher crystallinity and field effect carrier mobility. Interestingly, if the thin film of α-sexithiophene molecule was prepared on rubbed SAM surface,larer grain size and higher field effect carrier mobilities were observed.Furthermore, in all the above cases, we observed that increasing substrate temperature led to more ordered packing and increasing grain size.關鍵字(中) ★ 有機場效電晶體 關鍵字(英) ★ organic field effect transistors 論文目次 摘要.....................................................Ⅰ
目錄.....................................................Ⅲ
圖目錄...................................................Ⅶ
表目錄.................................................ⅩⅢ
1-1 有機自組裝單層分子膜導論..............................1
1-1-1 烷基硫醇............................................4
1-1-2 芐基硫醇............................................4
1-1-3 脂肪酸(Fatty acid)..................................5
1-1-4 烷基矽烷(alkylsilane)...............................5
1-2 有機半導體導論.......................................7
1-2-1 有機半導體材料......................................8
1-2-2 有機半導體的傳遞特性...............................11
1-2-3 有機半導體薄膜製備.................................13
1-2-4 有機場效電晶體導論 ................................14
1-2-5 有機場效電晶體之元件結構...........................15
1-2-6 有機場效電晶體的基本原理...........................16
1-2-7 有機場效電晶體的重要參數...........................18
貳、研究動機與方法.......................................20
參、實驗部份.............................................22
3-1 實驗用藥品...........................................22
3-1-1 合成用藥品.........................................22
3-1-2 基材來源...........................................22
3-1-3 清洗矽晶片用藥品...................................22
3-1-4 有機薄膜用藥品.....................................23
3-2 合成步驟.............................................23
3-3 薄膜製備.............................................28
3-3-1 矽晶片的清洗.......................................28
3-3-2 金、銀、銅基材的製備...............................29
3-3‐3 自組裝單層膜製備...................................29
3-3‐4 混合自組裝單層膜製備...............................30
3-3‐5 刷磨自組裝單層膜...................................30
3-3‐6 有機薄膜蒸鍍.......................................31
3-3‐7 電極之製備.........................................31
3-4 實驗用儀器與技術.....................................31
3-4-1 真空蒸鍍機 ( Vacuum Deposition System )............31
3-4-2 核磁共振光譜儀 ( Nuclear Magnetic Resonance Spectrometer)............................................32
3-4-3 傅立葉紅外線光譜儀 ( Fourior Transform Infrared Spectrometer, FTIR )......................................32
3-4-4 X光繞射儀 (Powder X-Ray Diffraction)...............33
3-4-5 原子力顯微鏡 (Atomic Force Microscopy)..............34
肆、結果與討論............................................36
4-1自組裝單層膜反射式紅外線光譜..........................36
4-1-1苯甲基硫醇..........................................36
4-1-2十六烷氧苯甲基硫醇..................................39
4-1-3苯甲酸與十六烷氧苯甲酸..............................41
4-2 混合自組裝單層膜.....................................42
4-2-1 酸對銀表面之混合自組裝單層膜.......................43
4-2-2 硫醇對金表面之混合自組裝單層膜.....................46
4-2-2-1 常溫下製備混合自組裝單層膜.......................47
4-2-2-2 高溫下製備混合自組裝單層膜.......................49
4-3 寡聚噻吩蒸鍍膜.......................................51
4-3-1 反射式紅外線光譜結果...............................51
4-3-1-1 室溫蒸鍍寡聚噻吩分子.............................54
4-3-1-2 高溫蒸鍍寡聚噻吩分子.............................59
4-3-1-3 X-ray繞射圖譜...................................63
4-4 元件製作與性質測量...................................66
4-4-1 α-六聯噻吩分子蒸鍍膜探討及其元件表現..............68
4-4-1-1 X-ray繞射光譜之研究.............................68
4-4-1-2原子力顯微鏡觀察結果..............................78
4-4-1-3電性測量結果......................................92
伍、結論.................................................100
陸、參考文獻.............................................102參考文獻 1. K. Xiao, Y. Liu, Y. Guo, G. Yu, L. Wan, D. Zhu, “Influence of self-assembly monolayers on ghe characteristics of copper phthalacyanine thin film transistor.” Appl. Phys. A 2003.
2. J. Cui, Q. L. Huang, Q. W. Wang, T. J. Marks, Langmuir 2001, 17, 2051.
3. I. Kymissis, C. D. Dimitrakopoulos, S. Purushothaman, IEEE Trans. Electron Devices 2001, 48, 1060.
4. W. C. Bigelow, D. L. Pickett, W. A. Zisman, Collid Interface Sci. 1946,513.
5. R. G. Nuzzo, D. L. Allara, J. Am. Chem. Soc. 1983, 105, 4481.
6. J. Sagiv, J. Am. Chem. Soc. 1980, 102, 92.
7. P. Fenter, A. Eberhardt, P. Eisenberger, Science 1994, 266, 1216.
8. E. Delamarche, B. Michel, H. Kang, C. Gerber, Langmuir 1994, 10,
4103.
9. A. A. Dhirani, R. W. Zehner, R. P. Hsung, P. Guyot-Sionnest, L. R. Sita, J. Am. Chem. Soc. 1995, 11, 2609.
10. P. Fenter, P. Eisenberger, J. Li, N. Camillone III, S. Bernasek, G. Scoles,T. A. Ramnanarayanan, K. S. Liang, Langmuir 1991, 7, 2013.
11. H. Keller, P. Simak, W. Schrepp, J. Dembowski, Thin Solid Film 1994, 244, 799.
12. M. Itoh, K. Nishihara, K. Aramaki, J. Electrochem. Soc. 1995, 117, 12528.
13. H. Schonherr, H. Ringsdorf, Langmuir 1996, 12, 3898.
14. H. A. Biebuyck, G. M. Whitesides, Langmuir 1994, 10, 1825.
15. T. R. Lee, P. E. Laibinis, J. P. Folkers, G. M. Whitesides, Pure Appl. Chem.1991, 63, 821.
16. J. P. Folkers, C. B. Gorman, P. E. Laibinis, S. Buchholz, G. M. Whitesides, R. G. Nuzzo, Langmuir 1995, 11, 813.
17. D. L. Allara, R. G. Nuzzo, Langmuir 1985, 1, 54.
18. P. E. Laibinis, J. J. Hickinan, M. S. Wrighton, G. M. Whitesides, Science 1989, 245, 845.
19. Y. T. Tao, M. T. Lee, S. C. Chang, J. Am. Chem. Soc. 1993, 115, 4350.
20. A. Ulamn, An Introduction to Ultrathin Organic Films:From Langmuir-Blodgett to Self-assembly. ed.; Academic Press: Boston 1991.
21. Q. Du, E. Freysz, Y. R. Shen, Science 1994, 264, 826.
22. C. D. Bain, J. Chem. Soc. Faraday Trans. 1995, 91, 1281.
23. J. P. Folkers, P. E. Laibinis, G. M. Whitesides, Langmuir 1992, 8, 1330.
24. S. C. Chang, I. Chao, Y. T. Tao, J. Am. Chem. Soc. 1994, 116, 6792.
25. A. Ulamn, Chem. Rev. 1996, 96, 1533.
26. A. J. Heeger, J. Phys. Chem. B 2001, 105, 8475.
27. G. Wang, J. Swensen, D. Moses, A. Heeger, J. Appl. Phys. 2003, 93, 6137.
28. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290, 2123.
29. D. Mitzi,J.Mater. Chem. 2004, 14, 2355.
30. D. B. Mitzi, K. Chondroudis, C. R. Kagan,, IBM Journal of Research and Development 2001, 45, 29.
31. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, W. J. Weber, J. Appl. Phys. 2002, 92, 5259.
32. J. H. Schon, C. K.loc, R. A. Laudise, B. Batlogg, Appl. Phys. Letter 1998, 73, 3574.
33. G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, F. Garnier, Solid State Commun. 1989, 72, 381.
34. G. Horowitz, M. E. Hajlaoui, Adv. Mater. 2000, 12, 1046.
35. M. Melucci, M. Gazzno, G. Barbarella, M. Cavallini, F. Biscarini, P. Maccagnani, P. Ostoja, J.Am.Chem.Soc 2003, 125, 10266.
36. S. Nagmatsu, K. Kaneto, R. Azumi, M. Matsumoto, J.Phys.Chem.B 2005, 109, 9374.
37. D. J. Gundlach, Y. Y. Lin, T. N. Jackson, D. G. Schlom, Appl. Phys. Lett. 1997, 71, 3853.
38. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, Sergei Ponomarenko, S. Kirchmeyer, W. Weber, Adv. Mater. 2003, 15, 917.
39. G. Horowitz, Adv. Mater. 1998, 10, 365.
40. T. Holstein, Ann. Phys. 1959, 8, 325.
41. E. A. Silinsh, A. Klimkans, S. Larsson, V. Cápek, Chem. Phys. 1995,
198, 311.
42. E. A. Silinsh, V. Cápek, Organic Molecular Crystals.Interaction, Localization and Transport Phenomena,American Institute of Physics Press, New York, 1994
43. G. G. Robertson, N. Aspley, R. W. Munn, Physics Reports 1980, 60, 59.
44. H. Baessler, in Primary Photoexcitations in Conjugated Polymers: Molecular versus Semiconductor Band Model edited by N. S. Sariciftci.
45. H. Sirringhaus, P. J. Brown, R. H. Frined, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. Leeuw, Nature 1999, 401, 685.
46. H. Koezuka, A. Tsumura, T. Ando, Synth. Met. 1987, 18, 699.
47. Z. Xie, M. S. A. Abdou, X. Lu, M. J. Deen, S. Holdcroft, Can. J. Phys. 1992, 70, 1171.
48. J. H. Burroughes, C. A. Jones, R. H. Frined, Nature 1988, 335, 137.
49. H. Fuchigami, A. Tsumura, H. Koezuka, Appl. Phys. Lett. 1993, 63, 1372.
50. I. Langmuir, J. Am. Chem. Soc. 1917, 39, 1848.
51. K. A. Blodgett, J. Am. Chem. Soc. 1935, 67, 1007.
52. A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 1986, 49, 1210.
54. K. Tamao, S. Kodama, I. Nakajima, M. Kumada, Tetrahedron 1982, 38, 3347.
55. P. Bauerle, F. Wurthner, G. Gotz,F. Effenberger, Syntheis 1993, 1099.
56. A. Merz, F. Ellinger, Syntheis 1991, 462.
57. J. Kagan, S. K. Arora, Tetra. Lett. 1983, 24, 4043.
58. F. Garnier, R. Yassar, G. Hajlaoui, F. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, J. Am. Chem. Soc. 1993, 115, 8716.
59. G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett 1986, 56, 930.
60. G. Louarn, J. P. Buisson, S. Lefrant, J. Phys. Chem 1995, 99, 11399.
61. X. L. Chen, A. J. Lovinger, Z. Bao, J. Sapjeta, Chem. Mater. 2001, 13, 1341.
62. W. S. Hu, Y. F. Lin, Y. T. Tao, Y. J. Hsu, D. H. Wei, Macromolecules 2005, 38, 9617.指導教授 陶雨台、吳春桂
(Yu-Tai Tao、Chun-Guey Wu)審核日期 2006-7-14 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare