博碩士論文 93223039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.128.95.219
姓名 林彥均(Yen-Chun Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 奈米複合觸媒於質子交換型燃料電池之應用
(Nano-Composite Electrochemical Catalyst for Proton Exchange Fuel Cell)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
燃料電池是極具發展潛力的能源轉換技術,具有高發電效率、高體積能量密度(4780Wh/L)、低噪音、低污染等諸多優點。直接甲醇燃料電池(Direct Methanol Fuel Cell,DMFC)因擁有最低操作溫度(~80℃)、元件體積小和重量輕等多項優勢,很適合應用在非固定式的能源需求,如一般可攜帶式電子產品,用以取代目前鋰電池之應用範圍,因此已成為目前全球爭相研究的焦點。然而因觸媒催化效能不足,加上電極間甲醇穿透(Cross-over)等問題,直接甲醇燃料電池遲遲無法商業化大量應用。
本論文從改善觸媒催化能力,提升陽極效能方面著手進行研究:以多種還原方式製備鉑基(Pt-based)單金屬與雙元合金陽極觸媒(Pt/support、Pt-Ru/support),搭配使用不同載體、嘗試改變鉑金金屬比例和製程條件(如:前驅物鹽類溶液酸鹼值、加熱迴流的溫度與時間等)以及不同的甲醇反應濃度。使用循環伏安法(Cyclic Voltammetry,CV)與計時安培分析法(Chronoamperometry,CA)探討觸媒對甲醇氧化反應的催化活性、穩定性及對一氧化碳毒化效應(CO-poisoning effect)的容忍度(Tolerance)。之後將電化學分析結果與由穿透式電子顯微鏡(TEM)、掃瞄式電子顯微鏡(SEM)、粉末X-光繞射儀(XRD)、X-光射線光電子光譜分析儀(XPS),以及等溫氮氣物理吸附/脫附儀(BET),測得載體與各製程所得觸媒的尺寸粒徑、分散性、比表面積及觸媒顆粒鍵結狀態等性質比對,探討這些因素對於觸媒電催化活性的影響,最後再與商業化觸媒E-tek Pt/C和Pt-Ru/C作比較。
摘要(英) Abstract
Fuel cell shows excellent ability in power-transformation as a result of high efficiency, little noise, few pollutants, and so forth. Among all the fuel cells, direct methanol fuel cell (DMFC) is the best choice for mobile power supply, replacing the application of Li-ion battery at present. Although DMFC has attracted many research groups’ attention because of owning such a variety of superior properties, there are still some problems badly to be solved. The developing barriers are involved in electro-oxidation performance of catalysts and methanol cross-over between electrodes, blocking the accomplishment of DMFC commercialized products.
The present study was focused on improving the electrochemical performance of the anodic catalyst to enhance the potency of anode. For this purpose, various procedures and reduction conditions were used for self-made Pt(/PtRu)-catalysts preparation, including pH-adjusting, temperature-control, different support materials, altered Pt-loading content as well as fuel concentration in the electrochemical tests.
The electro-catalytical activity to methanol oxidation and the tolerance for CO-poisoning effect of self-made Pt(/PtRu)-catalysts were both measured with not only cyclic voltammetry (CV) but also chronoamperometry (CA), and afterwards the data were correlated with the results of XRD, BET, TEM, SEM, and XPS for the sake of confirming the relation between all of them. The self-made Pt(/PtRu)-catalysts, which behave better performance, were compared to the commercial ones namely E-tek Pt/C and also Pt-Ru/C.
關鍵字(中) ★ 觸媒
★ 直接甲醇燃料電池
★ 電催化活性
★ 容忍度
關鍵字(英) ★ DMFC
★ Catalyst
★ Electrocatalytical Activity
★ Tolerance
論文目次 目 錄
中文摘要………………………………………………………I
英文摘要……………………………………………………II
目錄…………………………………………………………………IV
圖目錄…………………………………………………………………VIII
表目錄………………………………………………………………XI
第一章 緒論……………………………………………………01
1-1 前言…………………………………………………………01
1-2 燃料電池簡介……………………………………………01
1-2-1 發展起源………………………………………………01
1-2-2 發展優勢………………………………………………02
1-2-3 工作原理………………………………………………04
1-2-4 燃料電池之極化現象…………………………………06
1-2-5 燃料電池種類……………………………………………08
1-3 直接甲醇燃料電池…………………………………………10
1-3-1 主要構成組件……………………………………………10
1-3-2 薄膜電極組………………………………………………11
a 質子交換膜………………………………………………12
b 陽極電極………………………………………………13
c 陰極電極…………………………………………14
1-4 直接甲醇燃料電池之陽極觸媒材料……………………………14
1-4-1 電催化甲醇氧化機制……………………………………15
第二章 文獻回顧………………………………………………19
2-1 直接甲醇燃料電池之陽極觸媒發展……………………19
2-1-1 高表面積碳載體的開發…………………………………19
2-1-2 陽極觸媒的製備………………………………………20
2-1-3 觸媒結構………………………………………………23
2-1-4 減緩陽極觸媒在甲醇氧化過程中的毒化效應…………24
2-1-5 雙元合金觸媒與多元合金觸媒…………………………25
研究動機與目的………………………………………………………31
第三章 實驗方法及儀器原理……………………………………34
3-1 製備觸媒載體……………………………………………35
3-1-1 自製二氧化鈦奈米管之合成……………………35
3-2 製備鉑金單金屬觸媒…………………………………………36
3-2-1 迴流加熱醇類還原法(M1)………………………………36
3-2-2 調變迴流加熱醇類還原法(M1)之反應條件………36
3-2-3 製備不同載體的鉑金觸媒……………………………38
3-2-4 逐步迴流加熱醇類還原法(M2)…………………38
3-3 製備鉑釕雙元合金觸媒……………………………………39
3-3-1 迴流加熱醇類還原法(M1)…………………………39
3-3-2 化學還原含浸法…………………………………………39
a 乙二醇溶劑系統 ………………………………39
b 水溶劑系統 ……………………40
3-3-2 微波加熱醇類還原法…………………………………40
3-4 觸媒漿料配製……………………………………………41
3-5 工作電極片之製備…………………………………………42
3-6 觸媒性能測試……………………………………………43
3-7 實驗藥品…………………………………………………44
3-8 實驗儀器設備………………………………………………47
3-9 分析儀器應用理論…………………………………………48
3-9-1 粉末X-光繞射儀(XRD)………………………………48
3-9-2 掃瞄式電子顯微鏡(SEM)……………………………49
3-9-3 穿透式電子顯微鏡(TEM)…………………………50
3-9-4 氮氣等溫吸附/脫附儀(BET)……………………………51
3-9-5 X-光射線光電子光譜分析儀(XPS)……………52
3-9-6 循環伏安法(CV)……………………………………54
第四章 結果與討論…………………………………………………56
4-1 樣品代號說明………………………………………………56
4-1-1 鉑金單金屬觸媒. ………………………………56
4-1-2 鉑釕雙元合金觸媒…………………………………58
4-1-3 商業化觸媒…………………………………………58
4-2 載體型態及結構鑑定…………………………………………59
4-2-1 粉末X-光繞射結果………………………………………59
4-2-2 電子顯微鏡結果………………………………………60
4-3 鉑金觸媒之型態、結構與電化學性質分析…………………61
4-3-1 粉末X-光繞射結果……………………………………61
a 調變M1製程的反應條件…………………………61
b 載體效應………………………………………………63
c 製程M1與M2…………………………………68
d 二氧化鈦光催化效應………………………………69
e 鉑金承載量…….………………………………70
4-3-2 電子顯微鏡結果…………………………………………70
4-3-3 電化學分析結果………………………………………76
4-4 鉑釕合金觸媒型態、結構與電化學性質分析…………………89
4-4-1 粉末X-光繞射結果……………………………………89
4-4-2 電子顯微鏡結果…………………………………………93
4-4-3 電化學分析(CV)結果……………………………………97
4-4-4 電化學分析(CA)結果…………………………………101
4-4-5 X-光射線光電子光譜分析儀結果………………102
第五章 結論及未來展望…………………………………105
參考文獻……………………………………………108
附 錄…………………………………………………116
參考文獻 參考文獻
1. James Larminie et al. In Fuel Cell Systems Explained 2nd; John Wiley & Sons, Inc., 2003.
2. 萬其超 電化學; 商務印書局, 1992.
3. Jerry C. Huang In Micro-Fuel Cell Workshop, 2001.
4. R. Greef; R. M. Peat; L. M. Peter; D. Pletcher; J. Robinson In Instrumental methods in Electrochemistry; John Wiley & Sons, Inc.: New York ,1985.
5. M. P. Hogarth et al. Platinum Metals Review 2002, 46(4), 146.
6. V. S. Bagotzky; Y. B. Vassiliev; O. A. Khazov Journal of Electroanalytical Chemistry 1977, 81, 229.
7. B. D. McNicol et al. Journal of Electroanalytical Chemistry 1981, 118, 71-87.
8. K. Wang; H. A. Gasteiger; N. M. Markovi ; P. N. Ross Jr. Electrochimica Acta 1996, 41, 2587-2593.
9. T. Freelink; W. Visscher; J. A. R. van Veen Surface Science 1995, 335, 353.
10. Peter M. Urban; Anett Funke; Jens T. Müller; Michael Himmen; Andreas Docter Applied Catalysis A: General 2001, 221, 459-470.
11. J. Muller PH. D. thesis, RWTH Aachen, 1997.
12. H. A. Gasteiger; N. M. Markovi ; P. N. Ross Jr.; E. J. Cairns Journal of the Electrochemical Society 1994, 141, 1795.
13. Gurau, B.; Viswanathan, R.; Liu, R.; Lafrenz, T. J.; Ley, K. L.; Smotkin, E. S.; Reddington, E.; Sapienza, A.; Chan, B. C.; Mallouk, T. E.; Sarangapani, S. Journal of Physical Chemistry B 1998, 102(49), 9997-10003.
14. H. A. Gasteiger; N. M. Markovi ; P. N. Ross Jr.; E. J. Cairns Journal of Physical Chemistry 1994, 98, 617-625.
15. Park, K.-W.; Choi, J.-H.; Kwon, B.-K.; Lee, S.-A.; Ha, H.-Y.; Hong, S.-A.; Sung, Y.-E.; Kim, H.; Wieckowski, A. Journal of Physical Chemistry B 2002, 106(8), 1869-1877.
16. Kinoshita K. et al. Modern Aspect of Electrochemistry Plenum Press, 1996.
17. T. Yoshitake; Y. Shimakawa; S. Kuroshima; H. Kimura; T. Ichihashi; Y. Kubo; D. Kasuya; K. Takahashi; F. Kokai; M. Yudasaka; S. Iijima Physica B: Condensed Matter 2002, 323, 124-126.
18. Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou, Z. H.; Sun, G.; Xin, Q. Journal of Physical Chemistry B 2003, 107, 6292.
19. Yi-Cheng Liu; Xin-Ping Qiu; Yu-Qing Huang; Wen-Tao Zhu Journal of Power Sources 2002, 111, 160-164.
20. Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M. Journal of Physical Chemistry B 2002, 106, 760-766.
21. Steigerwalt, E. S.; Deluga, G. A.; Cliffel, D. E.; Lukehart, C. M. Journal of Physical Chemistry B 2001, 105, 8097-8101.
22. Takasu Y.; Fujiwara T.; Murakami Y. Journal of the Electrochemical Society 2000, 147, 4421-4427.
23. Proc. of the First Internationl Symp. on New Materials for Fuel Cells Systems, July, 1995.
24. Masahiro Watanabe; Makoto Uchida; Satoshi Motoo Journal of Electroanalytical Chemistry 1987, 229, 395-406.
25. Swathirajan et al. Journal of the Electrochemical Society 1991, 138, 1321.
26. Vogel, W.; Britz, P.; Bonnemann, H.; Rothe, J.; Hormes, J. Journal of Physical Chemistry B 1997, 101, 11029-11036.
27. A. Hamnett; B. J. Kennedy; F. E. Wagner Journal of Catalysis 1990, 124, 30-40.
28. Zhang, X.; Chan, K. Y. Chemistry of Materials 2003, 15, 451-459.
29. Zhaolin, Liu; Jim Yang Lee; Ming Han; Weixiang, Chen; Leong Ming Gan Journal of Materials Chemistry 2002, 12, 2453-2458.
30. Xu, W.; Lu, T.; Liu, C.; Xing, W. Journal of Physical Chemistry B 2005, 109(30), 14325-14330.
31. Liu, Z.; Lee, J. Y.; Chen, W.; Han, M.; Gan, L. M. Langmuir 2004, 20(1), 181-187.
32. Honji, A.; Mori, T.; Tamura, K.; Hishinuma, Y. Journal of the Electrochemical Society 1988, 135, 355.
33. X. Wang; I. M. Hsing Electrochimica Acta 2002, 47, 2981.
34. E. Antolini Journal of Materials Science 2003, 38, 2995-3005.
35. S. Mukerjee, S. Srinivasan, M. P. Soriaga, and J. McBreen, Journal of Materials Science 1995, 142, 1409.
36. A. Pebler Journal of Materials Science 1986, 133, 9.
37. K. Jakikozawa; J. Fuiji; J. Matsuda; K. Nishimura; J. Takasu Electrochimica Acta 1991, 36, 973.
38. S. Motoo; N. Furuya; K. H. Gijyutsu Journal of Surface Finish Metals 1985, 36, 386.
39. K. A. Friedrich; K. P. Geyzers; A. J. Dickinson; U. Stimming Journal of Electroanalytical Chemistry 2002, 524-525, 261-272.
40. Herrero, E.; Feliu, J. M.; Wieckowski, A. Langmuir 1999, 15(15), 4944-4948.
41. N. M. Markovi ; P. N. Ross, Jr. Surface Science Reports 2002, 45, 117-229.
42. H. A. Gasteiger; P. N. Ross Jr.; E. J. Cairns Surface Science 2001, 293, 67.
43. B. D. McNicol; R. T. Short Journal of Electroanalytical Chemistry 1977, 81, 249.
44. A. Stoyanova; V. Naidenov; K. Petrov; I. Nikolov; T. Vitanov; E. Budevski Journal of Applied Electrochemistry 1999, 29, 1197-1203.
45. A. S. Aricò; P. L. Antonucci; E. Modica; V. Baglio; H. Kim; V. Antonucci Electrochimica Acta 2002, 47, 3723-3732.
46. Takasu, Y.; Sugimoto, W.; Murakami, Y. Catalysis Surface 2003, 7, 21.
47. S. Mukerjee; J. McBreen Journal of Electroanalytical Chemistry 1998, 448, 163-171.
48. H. A. Gasteiger; N. M. Markovi ; P. N. Ross Jr. Journal of Physical Chemistry 1995, 99(22), 8945-8949.
49. K. L. Ley et al. Journal of the Electrochemical Society 1997, 144, 1543.
50. A. S. Aricò; Z. Poltarzewski; H. Kim; A. Morana; N. Giordano; V. Antonucci Journal of Power Sources, 1995, 55, 159-166.
51. Allen J. Bard; Larry R. Faulkner In Electrochemical methods, fundamentals and applications 2nd; John Wiley & Sons Inc., 2001.
52. Nosaka, A. Y.; Fujiwara, T.; Yagi, H.; Akutsu, H.; Nosaka, Y. Journal of Physical Chemistry B 2004, 108(26), 9121-9125.
53. Kukli, K.; Aidla, A.; Aarik, J.; Schuisky, M.; Harsta, A.; Ritala, M.; Leskela, M. Langmuir 2000, 16(21), 8122-8128.
54. Wang, C.-Y.; Pagel, R.; Bahnemann, D. W.; Dohrmann, J. K. Journal of Physical Chemistry B 2004, 108(37), 14082-14092.
55. Drew, K.; Girishkumar, G.; Vinodgopal, K.; Kamat, P. V. Journal of Physical Chemistry B 2005, 109(24), 11851-11857.
56. Chai, G. S.; Yoon, S. B.; Yu, J.-S.; Choi, J.-H.; Sung, Y.-E. Journal of Physical Chemistry B 2004, 108(22), 7074-7079
57. Brunauer, S.; Emmett, P. H.; Teller, E. Journal of the American Chemical Society 1938, 60, 309.
58. E. Auer; A. Freund; J. pietsch; T. Tacke Applied Catalysis A: General 1998, 173, 259-271.
59. Qingye Lu; Bo Yang; Lin Zhuang; Juntao Lu Journal of Physical Chemistry B 2005, 109, 1715-1722.
60. Kamat, P. V. Chemical Reviews 1993, 93, 267.
61. Uribe, F. A.; Valerio, J. A.; Garzon, F. H.; Zawodzinski, T. A. Electrochemical and Solid State Letters 2004, 7, A376.
62. Adcock, P. A.; Pacheco, S. V.; Norman, K. M.; Uribe, F. A. Journal of the Electrochemical Society 2005, 152, A459.
63. Vinodgopal, K.; Hotchandani, S.; Kamat, P. V. Journal of Physical Chemistry 1993, 97, 9040.
64. Yamakata, A.; Ishibashi, T.; Onishi, H. Journal of Physical Chemistry B 2002, 106, 9122.
65. Izumi, I.; Dunn, W. W.; Wilbourn, K. O.; Fan, F. R. F.; Bard, A. J. Journal of Physical Chemistry 1980, 84, 3207.
66. Kraeutler, B.; Bard, A. J. Journal of the American Chemical Society 1978, 100, 4317.
67. Kraeutler, B.; Bard, A. J. Journal of the American Chemical Society 1978, 100, 2239.
68. Ward, M. D.; Bard, A. J. Journal of Physical Chemistry 1982, 86, 3599.
69. Izumi, I.; Fan, F. R. F.; Bard, A. J. Journal of Physical Chemistry 1981, 85, 218.
70. Nosaka, Y.; Norimatsu, K.; Miyama, H. Chemical Physics Letters 1984, 106, 128.
71. Sadeghi, M.; Liu, W.; Zhang, T. G.; Stavropoulos, P.; Levy, B. Journal of Physical Chemistry 1996, 100, 19466.
72. Wood, A.; Giersig, M.; Mulvaney, P. Journal of Physical Chemistry B 2001, 105, 8810.
73. Subramanian, V.; Wolf, E.; Kamat, P. V. Journal of Physical Chemistry B 2001, 105, 11439.
74. A. S. Aricò; P. Creti; T. Kim; R. Mantegna; N. Giordano; V. Antonucci Journal of the Electrochemical Society 1996, 143, 3950.
75. Mingdeng, Wei; Yoshinari, Konishi; Haoshen, Zhou; Hideki, Sugihara; Hironori Arakawa Journal of the Electrochemical Society 2006, 153(6), A1232-A1236.
76. E. Antolini; L. Giorgi; F. Cardellini; E. Passalacqua Journal of Solid State Electrochemistry 2001, 5, 131.
77. Manohara, R.; Goodenough, J. B. Journal of Materials Chemitry 1992, 2, 875.
78. W. Li; X. Wang; Z. Chen; M. Waje; Y. Yan Langmuir 2005, 21(21), 9386-9389.
79. Y. S. Choi; S. H. Joo; S. A. Lee; D. J. You; H. Kim; C. H. Pak; H. Chang; D. Y. Seung Macromolecules 2006, 39(9), 3275-3282.
80. Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. Jr. Journal of Catalysis 1995, 154, 98.
81. Antoloni, E.; Cardellini, F. Journal of Alloys and Compounds 2001, 315, 118.
82. Antoloni, E.; Cardellini, F.; Giorgi, L.; Passalacqua, E. Journal of Materials Science Letters 2000, 19, 2099.
83. T. Iwasita; R. Dalbeck; E. Pastor; X. Xia Electrochimica Acta 1994, 11/12, 1817.
84. R. Ianniello; V. M. Schimidt; U. Stimming; J . Stumper; A. Wallau Journal of Materials Science Letters 1994, 11/12, 1863.
85. Roth, C.; Goetz, M.; Fuess, H. Journal of Applied Electrochemistry 2001, 31, 793.
86. Warren, B. E. In X-ray Diffraction; Addison- Wesley: Reading, MA, 1996.
87. P.R. Rolison; P.L. Hagans; K.E. Swider Langmuir, 1999, 15, 774.
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明