參考文獻 |
1. Kirk T. Kitchin, K. W. Dissociation of arsenite-peptide complexes: Triphasic nature, rate constants, half-lives, and biological importance. Journal of Biochemical and Molecular Toxicology 20, 48-56 (2006).
2. Antman, K. H. Introduction: The History of Arsenic Trioxide in Cancer Therapy. Oncologist 6, 1-2 (2001).
3. Roboz GJ, Dias S & al., L. G. e. Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood 96, 1525-1530 (2000).
4. Kitchin, K. T. Recent Advances in Arsenic Carcinogenesis: Modes of Action, Animal Model Systems, and Methylated Arsenic Metabolites. Toxicology and Applied Pharmacology 172, 249-261 (2001).
5. Tseng, W. P. Effects and dose--response relationships of skin cancer and blackfoot disease with arsenic. Environ Health Perspect 19, 109-19 (1977).
6. Duker, A. A., Carranza, E. J. M. & Hale, M. Arsenic geochemistry and health. Environment International 31, 631-641 (2005).
7. Konkola, K. More than a coincidence? The arrival of arsenic and the disappearance of plague in early modern Europe. J. Hist Med Allied Sci 47, 186-209 (1992).
8. Waxman, S. & Anderson, K. C. History of the development of arsenic derivatives in cancer therapy. Oncologist 6 Suppl 2, 3-10 (2001).
9. Smith, A. H., Lingas, E. O. & Rahman, M. Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. Bulletin of the World Health Organization 78, 1093-1103 (2000).
10. Niu, C. et al. Studies on Treatment of Acute Promyelocytic Leukemia With Arsenic Trioxide: Remission Induction, Follow-Up, and Molecular Monitoring in 11 Newly Diagnosed and 47 Relapsed Acute Promyelocytic Leukemia Patients. Blood 94, 3315-3324 (1999).
11. Zhu, J. et al. Arsenic-induced PML targeting onto nuclear bodies: Implications for the treatment of acute?romyelocytic?eukemia. PNAS 94, 3978-3983 (1997).
12. Melnick, A. & Licht, J. D. Deconstructing a Disease: RAR{alpha}, Its Fusion Partners, and Their Roles in the Pathogenesis of Acute Promyelocytic Leukemia. Blood 93, 3167-3215 (1999).
13. Soignet, S. L. et al. Complete Remission after Treatment of Acute Promyelocytic Leukemia with Arsenic Trioxide. N Engl J Med 339, 1341-1348 (1998).
14. Roboz, G. J. et al. Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood 96, 1525-1530 (2000).
15. Rousselot, P. et al. Arsenic Trioxide and Melarsoprol Induce Apoptosis in Plasma Cell Lines and in Plasma Cells from Myeloma Patients. Cancer Res 59, 1041-1048 (1999).
16. Park, W. H. et al. Arsenic Trioxide-mediated Growth Inhibition in MC/CAR Myeloma Cells via Cell Cycle Arrest in Association with Induction of Cyclin-dependent Kinase Inhibitor, p21, and Apoptosis. Cancer Res 60, 3065-3071 (2000).
17. Wang, Z.-G. et al. Arsenic Trioxide and Melarsoprol Induce Programmed Cell Death in Myeloid Leukemia Cell Lines and Function in a PML and PML-RARalpha Independent Manner. Blood 92, 1497-1504 (1998).
18. Chen, G. Q. et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88, 1052-1061 (1996).
19. Jing, Y., Dai, J., Chalmers-Redman, R. M. E., Tatton, W. G. & Waxman, S. Arsenic Trioxide Selectively Induces Acute Promyelocytic Leukemia Cell Apoptosis Via a Hydrogen Peroxide-Dependent Pathway. Blood 94, 2102-2111 (1999).
20. Huang, X. J., Wiernik, P. H., Klein, R. S. & Gallagher, R. E. Arsenic trioxide induces apoptosis of myeloid leukemia cells by activation of caspases. Med Oncol 16, 58-64 (1999).
21. Qian, Y., Castranova, V. & Shi, X. New perspectives in arsenic-induced cell signal transduction. Journal of Inorganic Biochemistry 96, 271-278 (2003).
22. Cooper, G. M. The Cell - A Molecular Approach. 2nd ed. (Sinauer Associates, Inc, Sunderland (MA), 2000).
23. Alberts, B. et al. Molecular Biology of the Cell 4th ed. (Garland Publishing, New York, 2002).
24. Rieder, C. L., Faruki, S. & Khodjakov, A. The centrosome in vertebrates: more than a microtubule-organizing center. Trends in Cell Biology 11, 413-419 (2001).
25. Meraldi, P. & Nigg, E. A. The centrosome cycle. FEBS Letters 521, 9-13 (2002).
26. Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2, 815-25 (2002).
27. Castedo, M., Perfettini, J. L., Roumier, T. & Kroemer, G. Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ 9, 1287-93 (2002).
28. Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2, 21-32 (2001).
29. VA, S. & RH, M. Checking out the G2/M transition. Biochim. Biophys. Acta 1519, 1-12 (2001).
30. Melo J & D., T. A unified view of the DNA-damage checkpoint. Curr. Opin. Cell. Biol. 14, 237-245 (2002).
31. Weaver, B. A. & Cleveland, D. W. Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell 8, 7-12 (2005).
32. Yu, H. Regulation of APC-Cdc20 by the spindle checkpoint. Current Opinion in Cell Biology 14, 706-714 (2002).
33. Wassmann, K. & Benezra, R. Mad2 transiently associates with an APC/p55Cdc complex during mitosis. PNAS 95, 11193-11198 (1998).
34. Li, Y., Gorbea, C., Mahaffey, D., Rechsteiner, M. & Benezra, R. MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc Natl Acad Sci U S A 94, 12431-6 (1997).
35. Shah, J. V. & Cleveland, D. W. Waiting for Anaphase: Mad2 and the Spindle Assembly Checkpoint. Cell 103, 997-1000 (2000).
36. Tang, Z., Bharadwaj, R., Li, B. & Yu, H. Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell 1, 227-37 (2001).
37. Mao, Y., Abrieu, A. & Cleveland, D. W. Activating and Silencing the Mitotic Checkpoint through CENP-E-Dependent Activation/Inactivation of BubR1. Cell 114, 87-98 (2003).
38. Li, W. et al. BUBR1 Phosphorylation Is Regulated during Mitotic Checkpoint Activation. Cell Growth Differ 10, 769-775 (1999).
39. Masayuki Nitta et al. Spindle checkpoint function is required for mitotic catastrophe induced by DNA-damaging agents. Oncogene 23, 6548-6558 (2004).
40. Fang, G. Checkpoint Protein BubR1 Acts Synergistically with Mad2 to Inhibit Anaphase-promoting Complex. Mol. Biol. Cell 13, 755-766 (2002).
41. Bharadwaj, R. & Yu, H. The spindle checkpoint, aneuploidy, and cancer. Oncogene 23, 2016-27 (2004).
42. Hoyt, M. A. A new view of the spindle checkpoint. J. Cell Biol. 154, 909-912 (2001).
43. Katsuya Takenaka, Y. G., and Eisuke Nishida. MAP Kinase Is Required for the Spindle Assembly Checkpoint but Is Dispensable for the Normal M Phase Entry and Exit in Xenopus Egg Cell Cycle Extracts. The Journal of Cell Biology 36, 1091-1097 (1997).
44. Geley, S. et al. Anaphase-promoting Complex/Cyclosome-dependent Proteolysis of Human Cyclin A Starts at the Beginning of Mitosis and Is Not Subject to the Spindle Assembly Checkpoint. J. Cell Biol. 153, 137-148 (2001).
45. Gorbsky, G. J. The mitotic spindle checkpoint. Current Biology 11, R1001-R1004 (2001).
46. Kops, G. J., Weaver, B. A. & Cleveland, D. W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5, 773-85 (2005).
47. Castedo, M. et al. Cell death by mitotic catastrophe: a molecular definition. Oncogene 23, 2825-37 (2004).
48. Wang, T. S., Kuo, C. F., Jan, K. Y. & Huang, H. Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. Journal Of Cellular Physiology 169, 256-268 (1996).
49. Van Loo, G. et al. Endonuclease G: A mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death and Differentiation 8, 1136-1142 (2001).
50. Lynn, S., Gurr, J.-R., Lai, H.-T. & Jan, K.-Y. NADH Oxidase Activation Is Involved in Arsenite-Induced Oxidative DNA Damage in Human Vascular Smooth Muscle Cells. Circ Res 86, 514-519 (2000).
51. Wang, T.-S. et al. Arsenite induces oxidative DNA adducts and DNA-protein cross-links in mammalian cells. Free Radical Biology and Medicine 31, 321-330 (2001).
52. Hei, T. K., Liu, S. X. & Waldren, C. Mutagenicity of arsenic in mammalian cells: Role of reactive oxygen species. PNAS 95, 8103-8107 (1998).
53. Samikkannu, T. et al. Reactive Oxygen Species Are Involved in Arsenic Trioxide Inhibition of Pyruvate Dehydrogenase Activity. Chem. Res. Toxicol. 16, 409-414 (2003).
54. Vega, L., Gonsebatt,M.E. and Ostrosky-Wegman,P. Aneugenic effect of sodium arsenite on human lymphocytes in vitro: an individual susceptibility effect detected. Mutat. Res., 334, 365-373 (1995).
55. Lee, T. C., Wang-Wuu,S., Huang,R.Y., Lee,K.C. and Jan,K.Y. Differential effects of pre- and posttreatment of sodium arsenite on the genotoxicity of methyl methanesulfonate in Chinese hamster ovary cells. Cancer Res 46, 1854-1857 (1986).
56. Tinwell, H., Stephens,S.C. and Ashby,J. Arsenite as the probable active species in the human carcinogenicity of arsenic: mouse micronucleus assays on Na and K arsenite, orpiment, and Fowler's solution. Environ. Hlth Perspect. 95, 205-210 (1991).
57. Wang, T. S. a. H., H. Active oxygen species are involved in the induction of micronuclei by arsenite in XRS-5 cells. Mutagenesis 9, 253-257 (1994).
58. Yih, L. H., Ho,I.C. and Lee,T.C. Sodium arsenite disturbs mitosis and induces chromosome loss in human fibroblasts. Cancer Res. 57 (1997).
59. Lee, T. C., Oshimura,M. and Barrett,J.C. Comparison of arsenic-induced cell transformation, cytotoxicity, mutation and cytogenetic effects in Syrian hamster embryo cells in culture. Carcinogenesis 6, 1421-1426 (1985).
60. Lee, T. C., Tanaka,N., Lamb,P.W., Gilmer,T.M. and Barrett,J.C. Induction of gene amplification by arsenic. Science 241 (1988).
61. Chen, F. & Shi, X. Intracellular signal transduction of cells in response to carcinogenic metals. Critical Reviews in Oncology/Hematology 42, 105-121 (2002).
62. Zhang, W. et al. The induction of apoptosis and cell cycle arrest by arsenic trioxide in lymphoid neoplasms. Leukemia 12, 1383-91 (1998).
63. Ma, D. C. et al. Selective induction of apoptosis of NB4 cells from G2+M phase by sodium arsenite at lower doses. Eur J Haematol 61, 27-35 (1998).
64. Hyun Park, W. et al. Arsenic trioxide inhibits the growth of A498 renal cell carcinoma cells via cell cycle arrest or apoptosis. Biochemical and Biophysical Research Communications 300, 230-235 (2003).
65. Chen, F. et al. Opposite Effect of NF-kappa B and c-Jun N-terminal Kinase on p53-independent GADD45 Induction by Arsenite. J. Biol. Chem. 276, 11414-11419 (2001).
66. Yih, L.-H., Tseng, Y.-Y., Wu, Y.-C. & Lee, T.-C. Induction of Centrosome Amplification during Arsenite-Induced Mitotic Arrest in CGL-2 Cells. Cancer Res 66, 2098-2106 (2006).
67. Liu, Q., Hilsenbeck, S. & Gazitt, Y. Arsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood 101, 4078-4087 (2003).
68. Yih, L.-H., Hsueh, S.-W., Luu, W.-S., Chiu, T. H. & Lee, T.-C. Arsenite induces prominent mitotic arrest via inhibition of G2 checkpoint activation in CGL-2 cells. Carcinogenesis 26, 53-63 (2005).
69. Okada, H. & Mak, T. W. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4, 592-603 (2004).
70. Jacobson, M. D., Weil, M. & Raff, M. C. Programmed Cell Death in Animal Development. Cell 88, 347-354 (1997).
71. Los, M., Stroh, C., Janicke, R. U., Engels, I. H. & Schulze-Osthoff, K. Caspases: more than just killers? Trends in Immunology 22, 31-34 (2001).
72. Budihardjo, I., Oliver, H., Lutter, M., Luo, X. & Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15, 269-90 (1999).
73. Yoshihide, T. Cell death regulation by the Bcl-2 protein family in the mitochondria. Journal of Cellular Physiology 195, 158-167 (2003).
74. Martin, S. S. & Vuori, K. Regulation of Bcl-2 proteins during anoikis and amorphosis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1692, 145-157 (2004).
75. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309-12 (1998).
76. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-89 (1997).
77. Ayscough K, H. J., MacNeill SA, Nurse P. Cold-sensitive mutants of p34cdc2 that suppress a mitotic catastrophe phenotype in fission yeast. Mol Gen Genet. 232, 344-350 (1992).
78. Brown, J. M. & Attardi, L. D. The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5, 231-7 (2005).
79. Castedo, M. et al. The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene 23, 4353-61 (2004).
80. Taylor, B. F. et al. P53 suppression of arsenite-induced mitotic catastrophe is mediated by p21CIP1/WAF1. J Pharmacol Exp Ther, jpet.106.103077 (2006).
81. Jordan, M. A. et al. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res 56, 816-25 (1996).
82. Carvalho, A., Carmena, M., Sambade, C., Earnshaw, W. C. & Wheatley, S. P. Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci 116, 2987-2998 (2003).
83. Lanni, J. S. & Jacks, T. Characterization of the p53-Dependent Postmitotic Checkpoint following Spindle Disruption. Mol. Cell. Biol. 18, 1055-1064 (1998).
84. Burns, T. F., Fei, P., Scata, K. A., Dicker, D. T. & El-Deiry, W. S. Silencing of the Novel p53 Target Gene Snk/Plk2 Leads to Mitotic Catastrophe in Paclitaxel (Taxol)-Exposed Cells. Mol. Cell. Biol. 23, 5556-5571 (2003).
85. Yih, L. H., Ho, I. C. & Lee, T. C. Sodium arsenite disturbs mitosis and induces chromosome loss in human fibroblasts. Cancer Research 57, 5051-5059 (1997).
86. Huang, S. C. & Lee, T. C. Arsenite inhibits mitotic division and perturbs spindle dynamics in HeLa S3 cells. Carcinogenesis 19, 889-896 (1998).
87. Stanbridge, E. J., Flandermeyer, R. R., Daniels, D. W. & Nelson-Rees, W. A. Specific chromosome loss associated with the expression of tumorigenicity in human cell hybrids. Somatic Cell Genet. 7, 699--712 (1981).
88. Stein, G. S. & Borun, T. W. The synthesis of acidic chromosomal proteins during the cell cycle of HeLa S-3 cells. I. The accelerated accumulation of acidic residual nuclear protein before the initiation of DNA replication. J. Cell Biol. 52, 292--307 (1972).
89. Doherty SC, M. S., McKelvey-Martin V, et al. Cell cycle checkpoint function in bladder cancer. J Natl Cancer Inst 95, 1859–68 (2003).
90. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680--685 (1970).
91. Zheng, Y. et al. Arsenic trioxide (As2O3) induces apoptosis through activation of Bax in hematopoietic cells. Oncogene 24, 3339-3347 (2005).
92. Yamaguchi, H. et al. Epothilone B analogue (BMS-247550)-mediated cytotoxicity through induction of Bax conformational change in human breast cancer cells. Cancer Res 62, 466-71 (2002).
93. Hsu, Y.-T. & Youle, R. J. Nonionic Detergents Induce Dimerization among Members of the Bcl-2 Family. J. Biol. Chem. 272, 13829-13834 (1997).
94. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248--254 (1976).
95. Cossarizza, A., M.Baccarani-Contri, G. Kalashnikova & Franceschi., C. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5',6,6'- tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). 197, 40-45 (1993).
96. Kasianowicz, J., Benz, R. & McLaughlin, S. The kinetic mechanism by which CCCP (carbonyl cyanide m-chlorophenylhydrazone) transports protons across membranes. J. Membr. Biol. 82, 179-190 (1984).
97. Lesca, C. et al. DNA damage induce [gamma]-tubulin-RAD51 nuclear complexes in mammalian cells. 24, 5165-5172 (2005).
98. Li, D. Q. et al. Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics 6, 3352-68 (2006).
99. Murray, A. Cell cycle checkpoints. Current Opinion in Cell Biology 6, 872-876 (1994).
100. Davidovic, L., Vodenicharov, M., Affar, E. B. & Poirier, G. G. Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res 268, 7-13 (2001).
101. Chyan-Jang Lee, Ching-Len Liao & Lin, Y.-L. Flavivirus Activates Phosphatidylinositol 3-Kinase Signaling To Block Caspase-Dependent Apoptotic Cell Death at the Early Stage of Virus Infection. 79 13, 8388 (2005).
102. Hsu, S. L. et al. Caspase 3, periodically expressed and activated at G2/M transition, is required for nocodazole-induced mitotic checkpoint. Apoptosis (2006).
103. Cohen, G. M. Caspases: the executioners of apoptosis. Biochem. J. 326, 1-16 (1997).
104. Li, P., D. Nijhawan, I. Budihardjo, S. M. Srinivasula, M. Ahmad, E. S. Alnemri, and X. Wang. . Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489 (1997).
105. Paquet, C., Schmitt, E., Beauchemin, M. & Bertrand, R. Activation of multidomain and BH3-only pro-apoptotic Bcl-2 family members in p53-defective cells. Apoptosis 9, 815-31 (2004).
106. Brichese, L., Barboule, N., Heliez, C. & Valette, A. Bcl-2 Phosphorylation and Proteasome-Dependent Degradation Induced by Paclitaxel Treatment: Consequences on Sensitivity of Isolated Mitochondria to Bid. Experimental Cell Research 278, 101-111 (2002).
107. Scorrano, L. et al. A Distinct Pathway Remodels Mitochondrial Cristae and Mobilizes Cytochrome c during Apoptosis. Developmental Cell 2, 55-67 (2002).
108. Yamaguchi, H. & Wang, H.-G. Bcl-XL Protects BimEL-induced Bax Conformational Change and Cytochrome c Release Independent of Interacting with Bax or BimEL. J. Biol. Chem. 277, 41604-41612 (2002).
109. Green and John, C., nbsp & Reed, D. R. Mitochondria and Apoptosis. Science 281, 1309-1312 (1998).
110. Roucou X., M. J. C. Conformational change of Bax: a question of life or death. Cell Death Differ 8, 875-877 (2001).
111. Marchetti, M. A., Weinberger, M., Murakami, Y., Burhans, W. C. & Huberman, J. A. Production of reactive oxygen species in response to replication stress and inappropriate mitosis in fission yeast. J Cell Sci 119, 124-131 (2006).
112. Torres, M., Forman, H. J. Redox signaling and the MAP kinase pathways. Biofactors 17, 287-296 (2003).
113. Wang, T. H., Wang, H. S. & Soong, Y. K. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer 88, 2619-28 (2000).
114. Shin, H. J. et al. Inhibition of histone deacetylase activity increases chromosomal instability by the aberrant regulation of mitotic checkpoint activation. Oncogene 22, 3853-8 (2003).
115. Takenaka, K., Gotoh, Y. & Nishida, E. MAP kinase is required for the spindle assembly checkpoint but is dispensable for the normal M phase entry and exit in Xenopus egg cell cycle extracts. J Cell Biol 136, 1091-7 (1997).
116. Henzel WJ, B. T., Stults JT, Wong SC, Grimley C, Watanabe C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci USA 90, 5011-5015 (1993).
117. Song, Y. & Masison, D. C. Independent Regulation of Hsp70 and Hsp90 Chaperones by Hsp70/Hsp90-organizing Protein Sti1 (Hop1). J. Biol. Chem. 280, 34178-34185 (2005).
118. Tao, W. et al. Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell 8, 49-59 (2005).
119. Dewson, G., Snowden, R. T., Almond, J. B., Dyer, M. J. & Cohen, G. M. Conformational change and mitochondrial translocation of Bax accompany proteasome inhibitor-induced apoptosis of chronic lymphocytic leukemic cells. Oncogene 22, 2643-54 (2003).
120. Roninson, I. B., Broude, E. V. & Chang, B.-D. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resistance Updates 4, 303-313 (2001).
121. Bunz, F. et al. Requirement for p53 and p21 to Sustain G2 Arrest After DNA Damage. Science 282, 1497-1501 (1998).
122. Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W. & Vogelstein, B. 14-3-3[sigma] is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616-620 (1999).
123. Cogswell, J. P., Brown, C. E., Bisi, J. E. & Neill, S. D. Dominant-Negative Polo-like Kinase 1 Induces Mitotic Catastrophe Independent of cdc25C Function. Cell Growth Differ 11, 615-623 (2000).
124. Huang, S.-C., Huang, C.-Y. F. & Lee, T.-C. Induction of mitosis-mediated apoptosis by sodium arsenite in HeLa S3 cells. Biochemical Pharmacology 60, 771-780 (2000).
125. Whitfield, M. L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13, 1977-2000 (2002).
126. Kim, M. et al. Caspase-Mediated Specific Cleavage of BubR1 Is a Determinant of Mitotic Progression. Mol. Cell. Biol. 25, 9232-9248 (2005).
127. C. Paquet, E. S., M. Beauchemin and R. Bertrand. Activation of multidomain and BH3-only pro-apoptotic Bcl-2 family members in p53-defective cells. Apoptosis 9, 815-831 (2004).
128. Furukawa, Y. et al. Phosphorylation of Bcl-2 Protein by CDC2 Kinase during G2/M Phases and Its Role in Cell Cycle Regulation. J. Biol. Chem. 275, 21661-21667 (2000).
129. Yamamoto, K. I., Hidenori; Korsmeyer, Stanley J. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Molecular and Cellular Biology 19, 8469-8478 (1999).
130. Lund, T., Stokke, T., Olsen, O. E. & Fodstad, O. Garlic arrests MDA-MB-435 cancer cells in mitosis, phosphorylates the proapoptotic BH3-only protein BimEL and induces apoptosis. Br J Cancer 92, 1773-81 (2005).
131. Lei K & RJ., D. JNK phosphorylation of Bim-related members of the Bcl-2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100, 2432-2437 (2003).
132. Luciano F et al. Phosphorylation of BimEL by ERK1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene 22, 6785-6793 (2003).
133. Mário Grãos, A. D. A., and Sukalyan Chatterjee. Growth-factor-dependent phosphorylation of Bim in mitosis. Biochemical Journal 388, 185-194 (2005).
134. Putcha GV, L. S., Frank S, Besirli CG, Clark K, Chu B, Alix S, Youle RJ, LaMarche A, Maroney AC, Johnson EM. . JNK-mediated Bim phosphorylation potentiates BAX-dependent apoptosis. Neuron 38, 899-914 (2003).
135. Cheng, E. H. et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8, 705-11 (2001).
136. Konishi, Y., Lehtinen, M., Donovan, N. & Bonni, A. Cdc2 phosphorylation of BAD links the cell cycle to the cell death machinery. Mol Cell 9, 1005-16 (2002).
137. Berndtsson, M. et al. Phosphorylation of BAD at Ser-128 during mitosis and paclitaxel-induced apoptosis. FEBS Letters 579, 3090-3094 (2005).
138. Blagosklonny MV, G. P., el-Deiry WS, Kingston DG, Higgs PI, Neckers L, Fojo T. Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res 57, 130-135 (1997).
139. Srivastava RK, S. A., Korsmeyer SJ, Nesterova M, Cho-Chung YS, Longo DL. Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol Cell Biol. 18, 3509-3517 (1998).
140. Pathan N, A.-S. C., Kitada S, Basu A, Haldar S, Reed JC. Microtubule-targeting drugs induce bcl-2 phosphorylation and association with Pin1. Neoplasia. 3, 550-559 (2001).
141. Calastretti A, B. A., Ceriani C, Vigano S, Zancai P, Capaccioli S, Nicolin A. Damaged microtubules can inactivate BCL-2 by means of the mTOR kinase. Oncogene 20, 6172-6180 (2001).
142. Gosslau A, R. L. Oxidativer Stress, altersabha¨ngige Zellscha¨digungen und antioxidative Mechanismen (Oxidative stress, age-related cell damage and antioxidative mechanisms). Z Gerontol Geriatr 35 (2002).
143. Fleury C, M. B., Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84, 131-141 (2002).
144. Reed, J. C. Apoptosis-targeted therapies for cancer. Cancer Cell 3, 17-22 (2003).
145. Takeda K, M. A., Nishitoh H, Ichijo H. Roles of MAPKKK ASK1 in stress-induced cell death. Cell struct Funct. 28, 23-29 (2003).
146. Picard, D. Heat-shock protein 90, a chaperone for folding and regulation. Cellular and Molecular Life Sciences 59, 1640-1648 (2002).
147. Prodromou, C. et al. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO Journal 18, 754-762 (1999).
148. Hernandez, M. P., Chadli, A. & Toft, D. O. HSP40 Binding Is the First Step in the HSP90 Chaperoning Pathway for the Progesterone Receptor. J. Biol. Chem. 277, 11873-11881 (2002).
149. Chen, S., Prapapanich, V., Rimerman, R. A., Honore, B. & Smith, D. F. Interactions of p60, a mediator of progesterone receptor assembly, with heat shock proteins hsp90 and hsp70. Mol Endocrinol 10, 682-93 (1996).
150. Wegele, H., Wandinger, S. K., Schmid, A. B., Reinstein, J. & Buchner, J. Substrate Transfer from the Chaperone Hsp70 to Hsp90. Journal of Molecular Biology 356, 802-811 (2006).
151. Wegele, H., Haslbeck, M., Reinstein, J. & Buchner, J. Sti1 is a novel activator of the Ssa proteins. Journal of Biological Chemistry 278, 25970-25976 (2003).
152. Ochi, T., Suzuki, T., Barrett, J. C. & Tsutsui, T. A trivalent dimethylarsenic compound, dimethy
larsine iodide, induces cellular transformation, aneuploidy, centrosome abnormality and multipolar spindle formation in Syrian hamster embryo cells. Toxicology 203, 155-163 (2004).
153. Kellog, D. R., Moritz, M. & Albert, B. M. The centrosome and cellular organization. Ann. Rev. Biochem 63, 639-674 (1994).
154. Sato, N., Mizumoto, K., Nakamura, M. & Tanaka, M. Radiation-Induced Centrosome Overduplication and Multiple Mitotic Spindles in Human Tumor Cells. Experimental Cell Research 255, 321-326 (2000).
155. Hsu, Y.-T. & Youle, R. J. Bax in Murine Thymus Is a Soluble Monomeric Protein That Displays Differential Detergent-induced Conformations. J. Biol. Chem. 273, 10777-10783 (1998). |