博碩士論文 93226014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:13.58.161.115
姓名 趙建昌(Chien-Chang Chao)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 次波長金屬光柵之理論研究
(Theory of Sub-wavelength Metallic Grating)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自從1998年T. W. Ebbesen等人分別在Natrue以及Physical Review B期刊上發表次波長金屬孔洞陣列的穿透光異常增強現象,並且引起之後廣泛相關的研究。目前次波長金屬孔洞的穿透光異常增強現象被認為是表面傳播電漿、表面局部電漿以及金屬波導模態的響應所造成。在這些機制中,表面局部電漿以及金屬波導模態都倚賴於金屬波導中的邊界條件。然而,到目前為止還缺乏一個適當數學模型來描述這些局部場形。
這篇論文中,我們使用電磁學理論分析了單一金屬狹縫以及金屬光柵。在單一金屬狹縫中,一個類似表面侷限電磁波的數學模型被提出並且稱呼為Surface modes in waveguide (SMW) 理論。這個SMW理論滿足奈米尺度真實金屬狹縫中的邊界條件。經由分析這個金屬狹縫中的電磁場,可以得到金屬狹縫中的傳播常數以及吸收係數。由SMW理論所得的傳撥常數以及吸收係數都使用Finite Difference Time Domain (FDTD) method 模擬得以驗證其高度的準確度。另外,我們使用SMW理論來修正已知的 Semi-analytical model 並且稱呼此修正後的模型為 Modified semi-analytical model (MSAM)。使用此MSAM模型可以用來分析金屬光柵的光學特性,例如異常的光穿透現象等。
摘要(英) It has been claimed that part of the mechanism of the transmission enhancement is due to the formation of propagating surface plasmon, localized surface plasmon and slit waveguide mode resonance. For these mechanisms, localized surface plasmon and waveguide mode is analysis rely on a suited boundary condition within the slit waveguide. However, until now, it lacks a suited mathematical expression of the localized fields.
In this thesis, we analyzed both a single metallic slit and metallic grating using electromagnetic theorem. A mathematical expression of the localized field within the slit is assumed to be similar to the form of surface-confined electromagnetic field, called surface modes in waveguide (SMW). This SMW theory is suited for the boundary condition of a nano-scaled metallic slit with a thick thickness. Through analyzing the EM fields inside of the slit, the analytical solutions of the propagating wave vector inside the slit can be solved. It is shown that the SMW has a good agreement with the simulation of the FDTD method. In addition, a semi-analytical model for the analysis of a metallic grating is modified with SMW theory. We call it modified semi-analytical model (MSAM). By using the MSAM, the transmission anomaly of metallic grating can be well-predicted which is more accurate than current analytical theories for a metallic gratings.
關鍵字(中) ★ 次波長
★ 金屬光柵
關鍵字(英) ★ sub-wavelength
★ metallic grating
論文目次 Abstracts II
Contents III
List of Figures V
List of Tables VIII
1. Introductions 1
1-1 Classic Metallic Grating 1
1-2 Extraordinary Transmission Through Metallic Aperture 3
2. Theory Review
2-1 Maxwell Equations 7
2-1-1 Electromagnetic Wave in Free Space 7
2-1-2 Electromagnetic Wave in Real Metal 9
2-1-3 The Energy Flux of Electromagnetic Wave 10
2-1-4 The Boundary Condition of an Interface 10
2-2 Surface Plasmon 11
2-2-1 Solution of Surface-Confined Electromagnetic Waves 12
2-2-2 Dispersion Relation of Surface Plasmon 15
2-3 Thick Metallic Grating 16
2-3-1 Lalanne : Semi-Analyticcal Model 16
2-3-2 Pendry: Transfer Matrix 21
2-3-3 Limitations of Current Theory 25
3. The Eigen Modes Inside Metallic Slit and The Modified Semi-Analytical Model for Metallic grating 27
3-1 Formulation of Eigen Mode in Metallic Slit for TM-Polarized Light 27
3-1-1 Classical Formulation of Fundamental Mode in Metallic Slit 28
3-1-2 The Guessed Surface Mode in Waveguide (SMW) Inside a Metallic Slit for TM-Polarized Light 30
3-1-3 Results and Discussion 35
3-2 Formulation of Eigen Mode in Metallic Slit for TE-Polarized Light 39
3-3 Modified Semi-Analytical Model (MSAM) of Transmission for a TM-Polarized Light 41
3-4 Modified Semi-Analytical Model (MSAM) of Transmission for a TE-Polarized Light 44
4. Analysis of Thick Metallic Grating 47
4-1 Thick Metallic Grating in Silver Film 47
4-1-1 Thickness-Dependent 50
4-1-2 Width-Dependent 53
4-1-3 Angle-Dependent 56
4-2 Discussion 59
5. Conclusion 62
References 64
參考文獻 [1] H. A. Bethe, .Theory of diffraction by small holes,. Phys. Rev. 66, 163-182 (1944).
[2] C.J. Bouwkamp, .Diffraction theory,. Rep. Prog. Phys. 17, 35-100 (1954).
[3] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio & P.A. Wolff, .Extraordinary optical transmission through sub-wavelength hole arrays,. Nature 391, 667-669 (1998).
[4] H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen & H. Lezec, .Surface plasmons enhance optical transmission through subwavelength holes,. Phys. Rev. B 58, 6779-6782 (1998).
[5] E. Popov, M. Nevi_ere, S. Enoch & R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev B 62, 16100-16108 (2000).
[6] Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits”, Phys. Rev. Lett. 88, 057403 (2002).
[7] H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra and H. Blok, ”Connection between phase singularities and the radiation pattern of a slit in a metal plate”, Phys. Rev. Lett. 93, 173901 (2004); ”Creation and annihilation of phase singularities near a sub-wavelength slit”, Opt. Exp. 11, 371-380 (2003).
[8] K.J.K. Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes”, Phys. Rev. Lett. 92, 183901 (2004).
[9] H.J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays”, Opt. Expr. 12, 3629-3651 (2004).
[10] U. Fano, .Effects of con_guration interaction on intensities and phase shifts,. Phys. Rev. 124, 1866-1878 (1961).
[11] C. Genet, M.P. van Exter, and J.P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra”, Opt. Commun. 225, 331-336 (2003).
[12] E. Betzig and R. J. Chichester, ‘‘Single molecules observed by near-field scanning optical microscopy,’’ Science 262, 1422 (1993)
[13] E. H. Synge, ‘‘A suggested method for extending microscopic resolution into the ultra-microscopic region,’’ Philos. Mag. 6, 356 (1928)
[14] D. W. Pohl and D. Courjon, eds., Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).
[15] M. Ohtsu and H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum, New York, 1999)
[16] C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401 (1950)
[17] A. Roberts, ‘‘Small-hole coupling of radiation into a near-field probe,’’ J. Appl. Phys. 70, 4045 (1991)
[18] T. Thio, K. M. Pellerin, and R. A. Linke, “Enhanced light transmission through a single subwavelength aperture”, Opt. Lett. 24, 1972 (2001)
[19] T. Thio, J. J. Lezec, and T. W. Ebbesen, “Strongly enhanced optical transmission through subwavelength holes in metal films”, Phycia B 279, 90 (2000)
[20] T. Thio, J. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of subwavelength apertures: Physics and applications”, Nanotechnology 13, 429 (2002)
[21] J. A. Porto, F. J. Garcìa-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits”, Phys. Rev. Lett. 83, 2845 (1999)
[22] S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings”, Phys. Rev. B 63, 033107 (2001)
[23] F. J. Garcìa-Vidal, H. J. Lezec, T.W. Ebbesen, and L. Martìn-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit”, Phys. Rev. Lett. 90(21), 213901(2003)
[24] A. Degiron and T. W. Ebbesen, “Analysis of the transmssion process through single aperture surrounded by periodic corrugations”, Opt. Exp. 12(16), p. 3694-3700 (2004)
[25] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martìn-Moreno, F. J. Garcìa-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture”, Science 297, 820 (2002)
[26] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, Berlin, 1988).
[27] Ph Lalanne, J P Hugonin, S Astilean, M Palamaru and K D M¨oller 2000 J. Opt. A: Pure Appl. Opt. 2 48–51.
[28] J. A. Porto, F. J. Garcı´a-Vidal, and J. B. Pendry 1999 Phys. Rev. Lett. 83 14
[29] P. Sheng, R. S. Stepleman, and P. N. Sanda, Phys. Rev. B 26, 2907 (1982).
[30] Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen”, Phys. Rev. Lett. 86, 5601 (2001)
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2006-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明