博碩士論文 93226016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.188.113.185
姓名 黃弘毅(Hung-I Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 奈米金屬狹縫之光穿透增益研究
(Research of The Transmission Enhancement Through a Nano-scaled Metallic Slit)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自從1998 年T. W. Ebbesen 等人分別在Natrue 以及Physical
Review B 期刊上發表次波長金屬孔洞陣列的穿透光異常增強現象,
並且引起之後廣泛相關的研究。另外也可以在次波長金屬狹縫周圍放置週期性的微結構用來得到較高的光穿透效率,而擁有高穿透效率的次波長結構就可以利用作為近場光儲存,近場顯微鏡和光學元件。
利用表面結構對於次波長狹縫得到較高的光穿透效率而言,其傳
遞過程可以分成三個步驟:藉表面微結構使得入射光耦合到金屬表面傳遞,耦合到表面的光傳遞經過金屬狹縫,藉著出射面微結構使的在出射面的光再次的散射到自由空間中。明顯的,當入射面有越多的能量耦合到表面,就會得到更高的穿透效率。雖然已經有很多對金屬奈米狹縫的光穿透效率增強機制的研究,但是他們所得到的穿透效率依然很低,一部份的理由就是表面微結構激發的能量在經過其他表面結構的時候產生散射,產生能量的散失。
在此,我們利用CDEW 以及FDTD 演算法去分析奈米金屬狹縫
的光學特性和金屬表面奈米結構的散射效應。藉此,我們求得一高轉換效率及低散射的奈米結構並利用此結構去做為奈米狹縫的光穿透效率增強機制,使得奈米金屬狹縫的穿透效率高達27%。
摘要(英) Since Ebbesen et al. reported the observation of enhanced transmission of light through nano hole arrays in an optically opaque metallic film, this observations have
stimulated a large body of research interesting. Beside a nano hole array, it was found that that a nano aperture surrounded by small periodic corrugations on the entrance
plane of a metallic film can also perform a large transmission enhancement. This kind of device thus holds an immense potential for use in applications, where both high throughput and high resolution are required, such as near-field data storage, near-field microscope and photonic crystal coupler.
It has been discussed that the transmission process through a trench-surrounded slit can be separated into three independent steps: coupling in, transmission through
the aperture and coupling out. It is straightforward that the more free-space light is converted into surface waves and then coupled into the nano-scaled aperture, the
higher the transmission is. Although many researches focused on enhancing the transmission through a nano-scaled metallic slit, the transmission is still too low for
practical applications. Part of the reason for this is that some of the energy is lost during the propagation toward the aperture due to scattering by the surface
corrugations.
In this thesis, we analyze the optical properties of a nano-scaled meatallic slit and the scattering effect of the patterned trench structure on the entrance plane using both CDEW and FDTD method. A trench with low scattering loss was designed. An overall transmission over 27% (Normalized by 6.5μm Gaussian beam) through a nano-scaled slit can be achieved by bordering the low scattering loss trenches.
關鍵字(中) ★ 奈米
★ 金屬狹縫
★ 光穿透增益
★ 次波長
關鍵字(英) ★ metal slit
★ light transmission enhancement
★ nano
★ subwavelength
論文目次 Abstracts .............................................II
List of Figures .......................................V
List of Tables ........................................VII
1. Introductions ......................................1
1-1 Extraordinary Transmission ........................1
1-2 Transmission Enhancement ..........................3
2. Review of Theory ...................................8
2-1 Classic Theory for Single Slit ....................8
2-2 Resonant behavior of Single Slit .................10
2-3 Surface Plasmon Model: Grating Coupling ..........11
2-4 An Alternative Theory for Transmission Enhancement: Diffracted Evanescent Wave Model .....................13
3. Simulation Tooling ................................20
3-1 The Finite-Difference Time-Domain Algorithm ......20
3-2 Absorbing boundary conditions ....................24
3-3 Optical constant of Ag ...........................25
4. Optical Behavior of Single Slit ...................29
4-1 Polarization Dependency of Thick Slit ............30
4-2 Resonant Effects of Nano-scaled Slit .............32
4.2.1 Effective Index Inside a Narrow Slit ...........34
4.2.2 Field Distributions and Spectra ................35
5. Transmission Enhancement through Trench-surrounded slit
5-1 An Optimized Trench Using CDEW ...................39
5-2 A Single Trench for Low Propagation Loss of Surface Waves ................................................40
5-3 One pair of Trenches .............................43
5-4 N pairs of Trenches ..............................44
5-5 Transmission Enhancement through a Single Slit Bordered by Trenches with Different Widths ...........47
6. Conclusion ........................................50
Reference ............................................52
參考文獻 [1] H. A. Bethe, .Theory of diffraction by small holes,. Phys. Rev. 66, 163-182 (1944).
[2] C.J. Bouwkamp, .Diffraction theory,. Rep. Prog. Phys. 17, 35-100 (1954).
[3] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio & P.A. Wolff, .Extraordinary optical transmission through sub-wavelength hole arrays,. Nature 391, 667-669 (1998).
[4] H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen & H. Lezec, .Surface plasmons enhance optical transmission through subwavelength holes,. Phys. Rev. B 58, 6779-6782 (1998).
[5] E. Popov, M. Nevi_ere, S. Enoch & R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev B 62, 16100-16108 (2000).
[6] Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings
with very narrow slits”, Phys. Rev. Lett. 88, 057403 (2002).
[7] H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra and H. Blok, ”Connection between phase singularities and the radiation pattern of a slit in a metal plate”, Phys. Rev. Lett. 93, 173901 (2004); ”Creation and annihilation of phase singularities near a sub-wavelength slit”, Opt. Exp. 11, 371-380 (2003).
[8] K.J.K. Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes”, Phys. Rev. Lett. 92, 183901 (2004).
[9] H.J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays”, Opt. Expr. 12, 3629-3651 (2004).
[10] U. Fano, .Effects of con_guration interaction on intensities and phase shifts,. Phys. Rev. 124, 1866-1878 (1961).
[11] C. Genet, M.P. van Exter, and J.P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra”, Opt. Commun. 225, 331-336 (2003).
[12] E. Betzig and R. J. Chichester, ‘‘Single molecules observed by near-field scanning optical microscopy,’’ Science 262, 1422 (1993)
[13] E. H. Synge, ‘‘A suggested method for extending microscopic resolution into the ultra-microscopic region,’’ Philos. Mag. 6, 356 (1928)
[14] D. W. Pohl and D. Courjon, eds., Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).
[15] M. Ohtsu and H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum, New York, 1999)
[16] C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,”
Philips Res. Rep. 5, 401 (1950) [17] A. Roberts, ‘‘Small-hole coupling of radiation into a near-field probe,’’ J. Appl. Phys. 70, 4045(1991)
[18] T. Thio, K. M. Pellerin, and R. A. Linke, “Enhanced light transmission through a single 53 subwavelength aperture”, Opt. Lett. 24, 1972 (2001)
[19] T. Thio, J. J. Lezec, and T. W. Ebbesen, “Strongly enhanced optical transmission through subwavelength holes in metal films”, Phycia B 279, 90 (2000)
[20] T. Thio, J. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke,“Giant optical transmission of subwavelength apertures: Physics and applications”, Nanotechnology 13, 429 (2002)
[21] J. A. Porto, F. J. Garcìa-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings
with very narrow slits”, Phys. Rev. Lett. 83, 2845 (1999)
[22] S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings”, Phys. Rev. B 63, 033107 (2001)
[23] F. J. Garcìa-Vidal, H. J. Lezec, T.W. Ebbesen, and L. Martìn-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit”, Phys. Rev. Lett. 90(21),213901(2003)
[24] A. Degiron and T. W. Ebbesen, “Analysis of the transmssion process through single aperture surrounded by periodic corrugations”, Opt. Exp. 12(16), p. 3694-3700 (2004)
[25] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martìn-Moreno, F. J. Garcìa-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture”, Science 297, 820 (2002)
[26] Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen”, Phys. Rev. Lett. 86, 5601 (2001)
[27] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, Berlin, 1988).
[28] J. Gmz-Rivas, C. Schotsch, P. H. Bolovar, and H. Kurz, “Enhanced transmission of THz radiation
through subwavelength holes“ Phys. Rev. B 68, 201306(R) (2003)
[29] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations
in isotropic media,” IEEE Trans. Ant. Prop. 14, 302-307, 1966.
[30] A. Taflove, and S. C. Hagness, “Computational electrodynamics: The Finite-Difference Time-Domain method 2nd Ed,” Artech House Publishers, Boston, 2000.
[31] P. Drude, Ann. Phys., Lpz. 1 566 (1900)
[32] L. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings”, Phys. Rev. B., 67, 235404-1(2003)
[33] E. D. Palik, “Handbook of optical constants of solids”, New York: Academic Press (1985)
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2007-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明