參考文獻 |
[ 1] L. B. Aksenov, N. R. Chitkara, W. Johnson, “Pressure and deformation in the plane strain pressing of circular section bar to form turbine blades,” Int. J. Mech. Sci. 17 (1975) 681-688.
[ 2] R. Hill, Mathematical Theory of Plasticity. Oxford University Press, London, 1950.
[ 3] W. Johnson, Proc. Third U.S. Natn. Cong. Appl. Mech., Brown University, Providence, p.571, 1958.
[ 4] B.S. Kang, N. Kim, S. Kobayashi, “Computer-aided perform design in forging of an airfoil section blade,” Int. J. Mach. Tools Manuf. 30 (1990) 43-52.
[ 5] G. Maccarini, C. Giardini, G. Pellegrini, and A. Bugini, “The influence of die geometry on cold extrusion forging operations: FEM and experimental results,” J. Mater. Process. Technol. 27 (1991) 227-238.
[ 6] Z. Wang, K. Xue, Y. Liu, “Backward UBET simulation of a blade,” J. Mater. Process. Technol. 65 (1997) 18-21.
[ 7] H. Ou, R. Balendra, “Preform design for forging of aerofoil sections using FE simulation,” J. Mater. Process. Technol. 80-81 (1998) 144-148.
[ 8] H. Ou, R. Balendra, “Die-elasticity for precision of aerofoil sections using finite element simulation,” J. Mater. Process. Technol. 76 (1998) 56-61
.
[ 9] M. Zhan, L. Yuli, Y. He, “Research on a new remeshing method for the 3D FEM simulation of blade forging,” J. Mater. Process. Technol. 94 (1999) 231-234.
[ 10] Z. M. Hu, T. A. Dean, “Aspect of forging of titanium alloys and the production of blade forms,” J. Mater. Process. Technol. 111 (2001) 10-19.
[11] X. Lu, R. Balendra, “Temperature-related errors on aerofoil section of turbine blade,” J. Mater. Process. Technol. 115 (2001) 240-244.
[12] X. Duan, T. Sheppard, “Shape optimization using FEA software: a V-shaped anvil as an example,” J. Mater. Process. Technol. 120 (2002) 426-431.
[13] X. Zhao, G. Zhao, G. Wang, and T. Wang, “Preform die shape design for uniformity of deformation in forging based on preform sensitivity analysis,” J. Mater. Process. Technol. 128 (2002) 25-32.
[14] M. Zhan, Y. Liu, H. Yang, “Influence of the shape and position of the perform in the precision forging of a compressor blade,” J. Mater.
Process. Technol. 120 (2002) 80-83.
[15] H. Ou, C. G. Armstrong, “Die shape compensation in hot forging of titanium aerofoil sections,” J. Mater. Process. Technol. 125-126 (2002) 347-352.
[16] L. Yuli, Y. He, Z. Mei, and F. Zengxiang, “A study of the influence of the friction conditions on the forging process of a blade with a tenon,” J. Mater. Process. Technol. 123 (2002) 42-46.
[17] H. Ou, C. G. Armstrong, M. A. Price, “Die shape optimization in forging of aerofoil sections,” J. Mater. Process. Technol. 132 (2003) 21-27.
[18] H. Ou, J. Lan, C. G. Armstrong, M. A. Price, “An FE simulation and optimization approach for the forging aeroengine components,” J. Mater. Process. Technol. 151 (2004) 208-216.
[19] “IMSL MATH/LIBRARY, User’s Manual, Fortran Subroutines for Mathematical Applications,” IMSL, Inc., Ver2.0, April, 1992, pp. 1030-1035.
[20] H. D. Hibbitt, P. V. Marcal, and J. R. Rice, “A Finite Element Formulation for Problems of Large Strain and Large Displacement,” Int. J. Solids Struct., Vol.6, pp.1069~1086,1970.
[21] R. M. McMeeking, and J. R. Rice, “Finite Element Formulations for Problems of Large Elastic-plastic Deformation,” Int. J. Solids Struct., Vol.11, pp.601~616,1975.
[22]“Theory and user information,”MARC Analysis Research Corporation. Volume A. Version 7.
[23]“Mentat Command Reference,”MARC Analysis Research Corporation. Version 3.1.
[24] “User Subroutines and special Routines,”MARC Analysis Research Corporation. Volume D. Version 3.1.
[25] Wu Chun-Yin and Hsu Yuan-Chuan, “The influence of die shape on the flow deformation of extrusion forging operations,” J. Mater. Process. Technol. 124 (2002) 67-76.
[26] 廖鴻賓, “MARC應用於冷鍛加工分析及其驗證分析” , 碩士論文, 國立中央大學機械工程研究所, 2003
[27] 楊文豹, “MARC應用於冷渦輪葉片鍛造之分析” , 碩士論文, 國立中央大學機械工程研究所, 2004
[28] 官愛蓮, “MARC應用於翼片鍛造之模具最佳化分析” , 碩士論文, 國立中央大學機械工程研究所, 2005
[29] http://www.aerospaceweb.org/question/airfoils/q0100.shtml |