參考文獻 |
1. M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics,” Materials Science and Engineering, Vol. 27, 2000, pp. 95-141.
2. W. J. Plumbridge, “Structural Integrity in Electronics,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 27, 2004, pp. 723-734.
3. Lead-Free Solder Project Final Report, NCMS Report 0401RE96, National Center for Manufacturing Sciences, Michigan, 1997
4. E. P. Wood, “In Search of New Lead-Free Electronic Solders,” Journal of Electronic Materials, Vol. 23, 1994, pp. 709-714.
5. B. Richards and K. Nimmo, “An Analysis of the Current Status of Lead-Free Soldering: Update 2000,” UK Department of Trade and Industry, London, 2000.
6. M. R. Harrison and J. H. Vincent, “IDEALS: Improved Design and Environment Aware Manufacturing of Electrics Assemblies by Lead-Free Solderings,” pp. 98-104 in Proceeding of the 12th Microelectronics and Packing Conference, IMAPS Europe, Cambridge, 1999.
7. Report on Research and Development on Lead-Free Soldering, Japan Electronic Industry Development Association, Tokyo, 2000.
8. W. Yang, L. E. Feltion, and R. W. Messler, “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints,” Journal of Electronic Materials, Vol. 24, 1995, pp. 1465-1472.
9. M. McCormack and S. Jin, “Improve Mechanical Properties in New, Pb-Free Solder Alloys,” Journal of Electronic Materials, Vol. 23, 1994, pp. 715-720.
10. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-Free Solder Alloy with Superior Mechanical-Properties,” Applied Physics Letters, Vol. 63, 1993, pp. 15-17.
11. IPC Roadmap: A guide for Assembly of Lead-Free Electronics, 4th Draft, IPC, Northbrook, IL, June, 2000.
12. 菅沼 克昭, 鉛付技術, 工業調查會, 日本, 2001. (日文)
13. Y. Kariya and M. Otsuka, “Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn, and In) Solder alloys,” Journal of Electronic Materials, Vol. 27, 1998, pp. 1229-1235.
14. V. I. Igoshev, J. I. Kleiman, D. Shangguan, S. Wong, and U. Michon, “Fracture of Sn-3.5%Ag Solder Alloy Under Creep,” Journal of Electronic Materials, Vol. 29, 2000, pp. 1356-1361.
15. W. J. Plumbridge, C. R. Gagg, and S. Peters, “The Creep of Lead-Free Solders at Elevated Temperatures,” Journal of Electronic Materials, Vol. 30, 2001, pp. 1178-1183.
16. S. G. Jadhav, T. R. Bieler, K. N. Subramanian, and J. P. Lucas, “Stress Relaxation Behavior of Composite and Eutectic Sn-Ag Solder Joints,” Journal of Electronic Materials, Vol. 30, 2001, pp. 1197-1205.
17. J. H. Lau, Solder Joint Reliability-Theory and Applications, Van Nostrand Reinhold, New York, USA, 1991, pp. 266-267
18. R. P. Skelton, High Temperature Fatigue: Properties and Prediction, Elsevier Applied Science, New York, USA, 1987.
19. K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys,” Materials Science and Engineering A, Vol. 333, 2002, pp.106-114.
20. K. Wu, N. Wade, J. Cui, and K. Miyahara, “Microstructural Effect on the Creep Strength of a Sn-3.5%Ag Solder Alloy,” Journal of Electronic Materials, Vol. 32, 2003, pp. 5-8.
21. C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, “Improvements of Microstructure, Wettability, Tensile and Creep Strength of Eutectic Sn-Ag Alloy by Doping with Rare-Earth Elements,” Journal of Materials Research, Vol. 17, 2002, pp. 3146-3154.
22. D. Q. Yu, J. Zhao, and L. Wang, “Improvement on the Microstructure Stability, Mechanical and Wetting Properties of Sn-Ag-Cu Lead-Free Solder with the Addition of Rare Earth Elements,” Journal of Alloys and Compounds, Vol. 376, 2004, pp. 170-175.
23. Y. Miyazawa and T. Ariga, “Influence of Aging Treatment on Microstructure and Hardness of Sn-(Ag, Bi, Zn) Eutectic Solder Alloy,” Materials Transactions, Vol. 42, 2001, pp. 776-782.
24. Q. Xiao, H. J. Bailey, and W. D. Armstrong, “Aging Effects on Microstructure and Tensile Property of Sn3.9Ag0.6Cu Solder Alloy,” Journal of Electronic Packaging, Transactions of the ASME, Vol. 126, 2004, pp. 208-212.
25. Q. Xiao and W. D. Armstrong, “Tensile Creep and Microstructural Characterization of Bulk Sn3.9Ag0.6Cu Lead-Free Solder,” Journal of Electronic Materials, Vol. 34, 2005, pp. 196-211.
26. P. T. Vianco, J. A. Rejent, and A. C. Kilgo, “Creep Behavior of the Ternary 95.5Sn-3.9Ag-0.6Cu Solder-Part I: As-Cast Condition,” Journal of Electronic Materials, Vol. 33, 2004, pp. 1389-1400.
27. P. T. Vianco, J. A. Rejent, and Alice C. Kilgo, “Creep Behavior of the Ternary 95.5Sn-3.9Ag-0.6Cu Solder-Part II: Aged Condition,” Journal of Electronic Materials, Vol. 33, 2004, pp. 1473-1484.
28. T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K. Zeng, and J. K. Kivilahti, “Morphology, Kinetics, and Thermodynamics of Solid-State Aging of Eutectic SnPb and Pb-free Solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu,” Journal of Materials Research, Vol. 17, 2002, pp. 291-301.
29. P. T. Vianco and J. A. Rejent, “A Methodology to Establish Baseline Metrics for Assessing the Isothermally Aging of Sn-Pb Solder Interconnects,” Soldering and Surface Mount Technology, Vol. 14, 2002, pp. 26-34.
30. A. Grusd, Lead Free Solders in Electronics, SMI, Heraeus, Inc., West Conshohocken, PA, 1997, pp. 32-38.
31. J. H. L. Pang, K. H. Tan, X. Shi, and Z. P. Wang, “Thermal Cycling Aging Effects on Microstructural and Mechanical Properties of a Single PBGA Solder Joint Specimen,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, 2001, pp. 10-15.
32. “Standard Test Method for Tension Testing of Metallic Material,” ASTM E8M-98, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 78-98.
33. K. S. Kim, S.H. Huh, and K. Sugauma, “Effects of Intermetallic Compounds on Properties of Sn-Ag-Cu Lead-Free Soldered Joints,” Journal of Alloys and Compounds, Vol. 352, 2003, pp. 226-236.
34. Y. H. Lee, “Adhesive Strength and Tensile Fracture of Ni Particle Enhanced Sn-Ag Composite Solder Joints,” Materials Science and Engineering A, Vol. 419, 2006, pp. 172-180.
35. J. J. Sundelin, S. T. Nurmi, T. K. Lepisto, and E. O. Ristolainen, “Mechanical and Microstructural Properties of SnAgCu Solder Joints,” Materials Science and Engineering A, Vol. 420, 2006, pp. 55-62.
36. A. K. Mukherjee, J. E. Bird, and J. E. Dorn, “Experimental Correlation for High-Temperature Creep,” Transactions of American Society for Metals, Vol. 62, 1969, pp. 155-179.
37. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, USA, 1988, pp. 442-450.
38. J. Yu, D. K. Joo, and S. W. Shin, “Rupture Time Analyses of the Sn-3.5Ag Alloys Containing Cu or Bi,” Acta Materialia, Vol. 50, 2002, pp. 4315-4324.
39. M. L. Huang and L. Wang, “Creep Behavior of Eutectic Sn-Ag Lead-Free Solder Alloy,” Journal of Materials Research, Vol. 17, 2002, pp. 2897-2903.
40. N. E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, Prentice-Hall International, New Jersey, USA, 1993, pp. 706-723.
41. J. Cadek, Creep in Metallic Materials, Elsevier Science Publishing Company, Inc., New York, USA, 1988, pp. 337-339.
42. D. K. Joo, J. Yu, and S. W. Shin, “Creep Rupture of Lead-Free Sn-3.5Ag-Cu Solders,” Journal of Electronic Materials, Vol. 32, 2003, pp. 541-547.
43. V. I. Igoshev, J. I. Kleiman, D. Shangguan, C. Lock, and S. Wong, “Microstructure Changes in Sn-3.5Ag Solder Alloy During Creep,” Journal of Electronic Materials, Vol. 27, 1998, pp. 1367-1371. |