博碩士論文 93323017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:18.117.75.218
姓名 李柏慶(Po-Ching Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 時效處理對錫-銀無鉛銲錫耐久機械性質之影響
(Aging Effect on the Long-Term Mechanical Properties of Sn-3.5Ag Lead-Free solder)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
本研究主旨在探討時效處理對電子構裝用Sn-3.5Ag無鉛銲錫之耐久機械性質影響。不同時效處理會造成Sn-3.5Ag微結構及潛變性質的改變,利用掃描式電子顯微鏡(SEM)來觀察此款無鉛銲錫之潛變破壞特徵。實驗結果顯示,經過長時間以及高溫時效處理的Sn-3.5Ag合金,其抗拉強度比自然時效30天處理要來得低,主要是因為富錫相與介金屬化合物粗大所造成。在兩個高溫時效條件的比較中,時效處理150oC三天的抗拉強度比120oC三天還要低,起因於較粗大的介金屬化合物。經過不同時效處理的Sn-3.5Ag合金,其潛變機制主要是差排潛變伴隨散佈顆粒強化的機制。而經過長時間自然時效或高溫時效處理的Sn-3.5Ag合金,其抗潛變能力比經過短時間自然時效處理的合金要來得低。利用Monkman-Grant 關係式來描述在不同時效處理下的Sn-3.5Ag合金之潛變行為有相當不錯的結果。在高應力下,介金屬化合物的粗大會加速微小孔洞的成長,因而縮短潛變壽命;在低應力下,介金屬化合物的尺寸大小對潛變壽命的影響相對較小。
摘要(英) ABSTRACT
The purpose of this study is to investigate the mechanical properties and creep behavior of extruded Sn-3.5Ag lead-free solder at differently aged conditions. Various aging treatments could cause changes in microstructure and mechanical properties. Fractography analysis with scanning electron microscopy (SEM) was conducted to study the creep fracture behavior in terms of microstructural change.
Experimental results show that the ultimate tensile strength (UTS) was reduced after a long-time natural aging or artificial aging at high temperatures, as compared to that of a short-time natural aging. This was due to coarsening of the ?-Sn phases and Ag3Sn IMCs in the microstructure. In addition, the UTS of Sn-3.5Ag solder aged at 150oC for 3 days was smaller than that aged at 120oC for 3 days due to a greater extent of coarsening of Ag3Sn IMCs. The values of stress exponent, n = 6 ~ 8, for the extruded Sn-3.5Ag solder at the four given aging conditions implied a creep mechanism involving dislocation creep and dispersion-particle-strengthening mechanism. The creep resistance for Sn-3.5Ag solder aged at room temperature (RT) for 600 days, 120oC for 3 days, or 150oC for 3 days was each worse than that after natural aging at RT for 30 days. The creep rupture times at all given aged conditions could be well described by a Monkman-Grant relation. Coarsening of Ag3Sn IMCs would accelerate the growth of microvoids at higher applied stresses leading to a much shorter creep rupture time for high-temperature aged specimens.
關鍵字(中) ★ 無鉛銲錫
★ 時效處理
★ 潛變
關鍵字(英) ★ Aging
★ Lead-Free solder
★ Creep
論文目次 TABLE OF CONTENTS
Page
LIST OF TABLES IV
LIST OF FIGURES V
1. INTRODUCTION 1
1.1 Lead-free solders 1
1.2 Sn-Ag alloys 3
1.3 Mechanical Failure of Solders Joints 3
1.4 Microstructural Coarsening Effect 4
1.5 Purpose and Scope 7
2. EXPERIMENTAL PROCEDURES 10
2.1 Material and Specimen Geometry 10
2.2 Tensile Setup and Parameters 10
2.3 Microstructural and Fractography Analyses 11
3. RESULTS AND DISCUSSION 12
3.1 Microstructure and Tensile Properties 12
3.2 Creep Curves and Resistance 13
3.3 Creep Lifetime Relationship 15
3.4 Fractography Analysis 17
4. CONCLUSIONS 19
REFERENCES 20
TABLES 24
FIGURES 26
參考文獻 1. M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics,” Materials Science and Engineering, Vol. 27, 2000, pp. 95-141.
2. W. J. Plumbridge, “Structural Integrity in Electronics,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 27, 2004, pp. 723-734.
3. Lead-Free Solder Project Final Report, NCMS Report 0401RE96, National Center for Manufacturing Sciences, Michigan, 1997
4. E. P. Wood, “In Search of New Lead-Free Electronic Solders,” Journal of Electronic Materials, Vol. 23, 1994, pp. 709-714.
5. B. Richards and K. Nimmo, “An Analysis of the Current Status of Lead-Free Soldering: Update 2000,” UK Department of Trade and Industry, London, 2000.
6. M. R. Harrison and J. H. Vincent, “IDEALS: Improved Design and Environment Aware Manufacturing of Electrics Assemblies by Lead-Free Solderings,” pp. 98-104 in Proceeding of the 12th Microelectronics and Packing Conference, IMAPS Europe, Cambridge, 1999.
7. Report on Research and Development on Lead-Free Soldering, Japan Electronic Industry Development Association, Tokyo, 2000.
8. W. Yang, L. E. Feltion, and R. W. Messler, “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints,” Journal of Electronic Materials, Vol. 24, 1995, pp. 1465-1472.
9. M. McCormack and S. Jin, “Improve Mechanical Properties in New, Pb-Free Solder Alloys,” Journal of Electronic Materials, Vol. 23, 1994, pp. 715-720.
10. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-Free Solder Alloy with Superior Mechanical-Properties,” Applied Physics Letters, Vol. 63, 1993, pp. 15-17.
11. IPC Roadmap: A guide for Assembly of Lead-Free Electronics, 4th Draft, IPC, Northbrook, IL, June, 2000.
12. 菅沼 克昭, 鉛付技術, 工業調查會, 日本, 2001. (日文)
13. Y. Kariya and M. Otsuka, “Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn, and In) Solder alloys,” Journal of Electronic Materials, Vol. 27, 1998, pp. 1229-1235.
14. V. I. Igoshev, J. I. Kleiman, D. Shangguan, S. Wong, and U. Michon, “Fracture of Sn-3.5%Ag Solder Alloy Under Creep,” Journal of Electronic Materials, Vol. 29, 2000, pp. 1356-1361.
15. W. J. Plumbridge, C. R. Gagg, and S. Peters, “The Creep of Lead-Free Solders at Elevated Temperatures,” Journal of Electronic Materials, Vol. 30, 2001, pp. 1178-1183.
16. S. G. Jadhav, T. R. Bieler, K. N. Subramanian, and J. P. Lucas, “Stress Relaxation Behavior of Composite and Eutectic Sn-Ag Solder Joints,” Journal of Electronic Materials, Vol. 30, 2001, pp. 1197-1205.
17. J. H. Lau, Solder Joint Reliability-Theory and Applications, Van Nostrand Reinhold, New York, USA, 1991, pp. 266-267
18. R. P. Skelton, High Temperature Fatigue: Properties and Prediction, Elsevier Applied Science, New York, USA, 1987.
19. K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys,” Materials Science and Engineering A, Vol. 333, 2002, pp.106-114.
20. K. Wu, N. Wade, J. Cui, and K. Miyahara, “Microstructural Effect on the Creep Strength of a Sn-3.5%Ag Solder Alloy,” Journal of Electronic Materials, Vol. 32, 2003, pp. 5-8.
21. C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, “Improvements of Microstructure, Wettability, Tensile and Creep Strength of Eutectic Sn-Ag Alloy by Doping with Rare-Earth Elements,” Journal of Materials Research, Vol. 17, 2002, pp. 3146-3154.
22. D. Q. Yu, J. Zhao, and L. Wang, “Improvement on the Microstructure Stability, Mechanical and Wetting Properties of Sn-Ag-Cu Lead-Free Solder with the Addition of Rare Earth Elements,” Journal of Alloys and Compounds, Vol. 376, 2004, pp. 170-175.
23. Y. Miyazawa and T. Ariga, “Influence of Aging Treatment on Microstructure and Hardness of Sn-(Ag, Bi, Zn) Eutectic Solder Alloy,” Materials Transactions, Vol. 42, 2001, pp. 776-782.
24. Q. Xiao, H. J. Bailey, and W. D. Armstrong, “Aging Effects on Microstructure and Tensile Property of Sn3.9Ag0.6Cu Solder Alloy,” Journal of Electronic Packaging, Transactions of the ASME, Vol. 126, 2004, pp. 208-212.
25. Q. Xiao and W. D. Armstrong, “Tensile Creep and Microstructural Characterization of Bulk Sn3.9Ag0.6Cu Lead-Free Solder,” Journal of Electronic Materials, Vol. 34, 2005, pp. 196-211.
26. P. T. Vianco, J. A. Rejent, and A. C. Kilgo, “Creep Behavior of the Ternary 95.5Sn-3.9Ag-0.6Cu Solder-Part I: As-Cast Condition,” Journal of Electronic Materials, Vol. 33, 2004, pp. 1389-1400.
27. P. T. Vianco, J. A. Rejent, and Alice C. Kilgo, “Creep Behavior of the Ternary 95.5Sn-3.9Ag-0.6Cu Solder-Part II: Aged Condition,” Journal of Electronic Materials, Vol. 33, 2004, pp. 1473-1484.
28. T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K. Zeng, and J. K. Kivilahti, “Morphology, Kinetics, and Thermodynamics of Solid-State Aging of Eutectic SnPb and Pb-free Solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu,” Journal of Materials Research, Vol. 17, 2002, pp. 291-301.
29. P. T. Vianco and J. A. Rejent, “A Methodology to Establish Baseline Metrics for Assessing the Isothermally Aging of Sn-Pb Solder Interconnects,” Soldering and Surface Mount Technology, Vol. 14, 2002, pp. 26-34.
30. A. Grusd, Lead Free Solders in Electronics, SMI, Heraeus, Inc., West Conshohocken, PA, 1997, pp. 32-38.
31. J. H. L. Pang, K. H. Tan, X. Shi, and Z. P. Wang, “Thermal Cycling Aging Effects on Microstructural and Mechanical Properties of a Single PBGA Solder Joint Specimen,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, 2001, pp. 10-15.
32. “Standard Test Method for Tension Testing of Metallic Material,” ASTM E8M-98, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 78-98.
33. K. S. Kim, S.H. Huh, and K. Sugauma, “Effects of Intermetallic Compounds on Properties of Sn-Ag-Cu Lead-Free Soldered Joints,” Journal of Alloys and Compounds, Vol. 352, 2003, pp. 226-236.
34. Y. H. Lee, “Adhesive Strength and Tensile Fracture of Ni Particle Enhanced Sn-Ag Composite Solder Joints,” Materials Science and Engineering A, Vol. 419, 2006, pp. 172-180.
35. J. J. Sundelin, S. T. Nurmi, T. K. Lepisto, and E. O. Ristolainen, “Mechanical and Microstructural Properties of SnAgCu Solder Joints,” Materials Science and Engineering A, Vol. 420, 2006, pp. 55-62.
36. A. K. Mukherjee, J. E. Bird, and J. E. Dorn, “Experimental Correlation for High-Temperature Creep,” Transactions of American Society for Metals, Vol. 62, 1969, pp. 155-179.
37. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, USA, 1988, pp. 442-450.
38. J. Yu, D. K. Joo, and S. W. Shin, “Rupture Time Analyses of the Sn-3.5Ag Alloys Containing Cu or Bi,” Acta Materialia, Vol. 50, 2002, pp. 4315-4324.
39. M. L. Huang and L. Wang, “Creep Behavior of Eutectic Sn-Ag Lead-Free Solder Alloy,” Journal of Materials Research, Vol. 17, 2002, pp. 2897-2903.
40. N. E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, Prentice-Hall International, New Jersey, USA, 1993, pp. 706-723.
41. J. Cadek, Creep in Metallic Materials, Elsevier Science Publishing Company, Inc., New York, USA, 1988, pp. 337-339.
42. D. K. Joo, J. Yu, and S. W. Shin, “Creep Rupture of Lead-Free Sn-3.5Ag-Cu Solders,” Journal of Electronic Materials, Vol. 32, 2003, pp. 541-547.
43. V. I. Igoshev, J. I. Kleiman, D. Shangguan, C. Lock, and S. Wong, “Microstructure Changes in Sn-3.5Ag Solder Alloy During Creep,” Journal of Electronic Materials, Vol. 27, 1998, pp. 1367-1371.
指導教授 林志光(Chig-Kuang Lin) 審核日期 2006-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明