博碩士論文 93323091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:3.15.34.233
姓名 蘇文(Vincent So)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 膝關節局部表面重建研究
(A research on surface reconstruction for partial knee surface repairing)
相關論文
★ 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管★ 整合可調式阻力之手足復健機研究
★ 應用於肝腫瘤治療之超音波影像輔助機械臂HIFU燒灼實驗系統★ 顱顏整型手術用植入物之設計與製作
★ 電腦輔助骨科手術用規劃及導引系統★ 遠端遙控機械手臂腹腔鏡手術系統
★ 頭部CT與MR影像之融合★ 手術用影像導引機械人定位及鑽孔系統
★ 機器人校正與醫學影像導引定位應用★ 顱顏手術用規劃及導引系統
★ 醫學用超音波影像導引系統★ 應用3D區域成長法於腦部磁共振影像之分割
★ 腦部手術用導引系統之方位校準及腦瘤影像分割★ 超音波影像即時震波導引
★ 腫瘤偵測與顱顏骨骼重建★ 骨科手術用C-arm影像輔助規劃及導引系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在膝關節表面重建手術中,由於所裝配的植入物表面直接與病患的半月板及關節軟骨接觸摩擦,若此一表面與膝關節未受損處之表面無法正確吻合,則可能導致病患膝關節的損傷及加速植入物的損壞。為了避免上述問題,本研究希望藉由膝關節上受損部位周圍之軟骨表面資料,重建受損部位應有的平滑表面,以做為植入物設計的參考。
在表面重建的方法上,本研究提出以移動式最小平方法和徑向基底函數神經網路作為修補膝關節表面缺損的方法。前者是在常見的最小平方法中加入權重值做調整,以修正嵌合的誤差;後者則是利用所建構之徑向基底函數,以函數逼近的方式找到輸入與輸出間的關係,藉此建立膝關節表面的數學模型。
由實驗結果可以發現徑向基底函數神經網路較適合應用於修補膝關節表面上的缺損,在膝關節較易受損的內髁部位,即使受損部份佔重建區域達49.7%,其修補的最大誤差僅為0.171㎜、平均誤差亦僅為0.052㎜。故日後在設計用於修補膝關節表面微小受損的植入物時,可考慮採用以徑向基底函數神經網路計算所得之曲面作為植入物設計的依據。
摘要(英) In resurfacing reconstruction of the knee joint, the surface of the implant will contact the plateau and joint cartilage dynamically. If the implant surface does not fit well with the joint surface, it could lead to the damage of both the knee joint and the implant.
This research aims to use the surrounding cartilage surface of the joint defect to reconstruct original surface, which will be used for the design of the resurfacing implant.
As for the methods of surface reconstruction, moving least squares method and radial basis function neural network are proposed for restoration of the normal surface of the joint defect. The former uses a weighting method to compensate the errors of fitting; while the latter uses radial basis functions to find the relationship of input and output in order to modeling the surface. Both of the methods are applied to reconstruct various curved surfaces. The experimental results show that radial basis function neural network is better to restore the damaged knee joint surface. Also, at the easily damaged condyle part of the knee joint, the maximum approximation error is 0.171㎜ and the average approximation error is only 0.052㎜ even if the defect part of the reconstruction area reaches 49.7%. Based on the results, the radial basis function neural network is recommended to be used to generate resurfacing implants for the reconstruction of the knee joint defect.
關鍵字(中) ★ 徑向基底函數神經網路
★ 移動式最小平方法
★ 膝關節表面重建
關鍵字(英) ★ radial basis function neural network
★ moving least squares
★ knee joint
★ joint resurfacing reconstruction
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VIII
第1章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 3
1-3 研究方法簡介 5
1-4 論文介紹 6
第2章 膝關節局部表面重建方法 7
2-1 最小平方法 7
2-1-1 以最小平方法建立曲面 7
2-1-2 最小平方法的缺點 9
2-2 移動式最小平方法 10
2-2-1 何謂移動式最小平方法 10
2-2-2 應用移動式最小平方法描述及修補曲面 12
2-3 類神經網路簡介 14
2-3-1 什麼是類神經網路 14
2-3-2 為什麼使用類神經網路 14
2-3-3 類神經網路的基本模型 15
2-3-4 類神經網路的特性 16
2-4 徑向基底函數神經網路 17
2-4-1 徑向基底函數神經網路的基本架構 17
2-4-2 徑向基底函數中心的選取 19
2-4-3 徑向基底函數神經網路的學習演算法 22
2-4-4 應用徑向基底函數神經網路描述及修補曲面 24
第3章 膝關節局部表面重建操作步驟 27
3-1 軟體建構基礎 27
3-2 操作步驟 28
第4章 實驗結果與討論 36
4-1 不同曲面對修補結果的影響 36
4-1-1 對不同曲面修補的誤差 36
4-1-2 對不同曲面修補的效率 40
4-2 破損區域對修補結果的影響 41
4-2-1 破損區域對修補誤差的影響 41
4-2-2 破損區域對修補效率的影響 45
4-3 修補膝關節模型 48
4-3-1 內髁部份的大型缺損 49
4-3-2 內髁附近的小型缺損 52
4-3-3 內髁後側附近的大型缺損 55
4-3-4 內髁後側附近的小型缺損 58
4-3-5 其他部位的缺損 61
4-4 使用RBFNN修補膝關節模型上之特定區域 66
4-4-1 股骨與髕骨相接處 66
4-4-2 內髁附近 69
第5章 結論 73
參考文獻 76
參考文獻 [1] Hoppe, H., DeRose, T., Duchamp, T., et al., “Surface reconstruction from unorganized points,” SIGGRAPH’92, pp. 71-78, 1992.
[2] Lorensen, W. E., Cline, H. E., “Marching cubes:a high resolution 3D surface construction algorithm,” Computer Graphics, Vol. 21, pp. 163-169, 1987.
[3] Dobkin, D.P., Levy, S.V.F., Thurston, W.P., et al., “Contour tracing by piecewise linear approximations,” ACM TOG, Vol. 9, pp. 389-423, 1990.
[4] Gopi, M., Krishnan, S., “A fast and efficient projection based approach for surface reconstruction,” Journal of High Performance Computer Graphics, Multimedia and Visualisation, Vol. 1, pp. 1-12, 2000.
[5] Amenta, N., Bern, M., Kamvysselis, M., “A new Voronoi-based surface reconstruction algorithm,” SIGGRAPH’98, pp. 415-421, 1998.
[6] Jun, Y., “A piecewise hole filling algorithm in reverse engineering,” Computer-Aided Design, Vol. 37, pp. 263-270, 2005.
[7] Davies, J., Marschner, S.R., Garr, M., et al., “Filling holes in complex surface using volumetric diffusion,” First International Symposium on 3D Data Processing, Visualization, Transmission, 2002.
[8] Wang, J., Oliveira, M.M., “A hole-filling strategy for reconstruction of smooth surface in range image,” XVI Brazilian Symposium on Computer Graphics and Image Processing, Geometric Modeling 1, pp. 11-18, 2003.
[9] Lancaster, P., Salkauskas, K., “Curve and surface fitting, an introduction,” Academic Press, 1986.
[10] Rumelhart, D.E., Hinton, G.E., Williams, R.J., “Learning internal representation by error propagation,” Parallel Distributed Processing, Vol. 1, pp. 318-362, 1986.
[11] Lazzaro, D., Montefusco, L.B., “Radial basis function for the multivariate interpolation of large scattered data set,” Journal of Computational and Applied Mathematics, Vol. 140, pp. 521-536, 2002.
[12] Carr, J.C., Fright, W.R., “Surface interpolation with radial basis function for medical imaging,” IEEE Transaction on Medical Imaging, Vol. 16, pp. 96-107, 1997.
[13] Levin, D., “The approximation power of moving least-squares,” Mathematic of Computation, Vol. 67, pp. 1517-1531, 1998.
[14] Powell, M.J.D., “Radial basis function for multivariable interpolation: a review,” IMA Conference on Algorithms for Approximation of Functions and Data, pp. 143-167, 1987.
[15] Chen, S., Cowan, C.F.N., Grant, P.M., “Orthogonal least squares learning algorithm for radial basis function networks,” IEEE Transactions on Neural Networks, Vol. 2, pp. 302-309, 1991.
[16] Franke, R., “Smooth interpolation of scattered data by local thin plate splines,” Computers and Mathematics with Applications, Vol. 8, pp. 273-281, 1982.
[17] Powell, M.J.D, “The theory of radial basis function approximation in 1990,” Advances in Numerical Analysis II: Wavelets, Subdivision Algorithms, and Radial Basis Functions, Oxford University Press, pp. 105-210, 1990.
[18] Niyogi, P., Girosi, F., “On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions,” Neural Computation, Vol. 8, pp. 819-842, 1996.
[19] Gupta, M.M., Jin, L., Homma, N., “Static and dynamic neural network,” John Wiley & Sons, Inc, pp. 223-246, 2003.
[20] Xia, Q., Wang, M.Y., Wu, X., “Orthogonal least squares in partition of unity surface reconstruction with radial basis function,” International Conference on Geometric Modeling and Imaging (GMAI 2006), pp. 28-33, 2006.
指導教授 曾清秀(Ching-Shiow Teseng) 審核日期 2008-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明