博碩士論文 93323119 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.147.89.50
姓名 王鏡淳(Chin-Tsun Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 水在蛇型流道之行為探討
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本文為探討質子交換膜電池內陰極水生成量大小之排水問題,模擬三維之蛇行流道,在不考慮化學反應的條件下來觀察水在流道內的行為模式與入口空氣速度影響水排除效率的關係。
以三種不同之入口空氣速度利用水體積的多寡探討在少量水生成與大量水生成下水在流道內的行為模式。在流道中加入擋板與更改成局部漸縮式的流道並比較與原始流道的排水量的關係,並探討改變流道後影響排水量的因素。
本文結果顯示由於空氣對水的慣性力、黏滯力與剪應力帶動了水的運動。由於空氣速度分佈都會慢慢呈現fully developed的狀態,使水最後的分布均在流道兩側。少量水生成的情形由於本文只探討三個入口空氣速度的影響,所以若把速度加大後有多少水會帶離出口,並無法更確切得知。大量水生成時,速度較快的入口流速會導致較快的排水效率。改變流道會造成局部水在水通道變小處與角落處堆積,造成排水效率不良。
摘要(英) ABSTRACT
This article discussed the water behavior in serpentine channel for proton exchange membrane fuel cell cathode and inlet velocity effect for water removing without considering chemical reaction.
Using three different inlet velocities, this article discussed the water behavior in channel for less and larger water generation, and compared with the original model about the water removal by using partially blocked channel and gradually decreased area in part of channel. The factor of water removal in changing the fluid channel would be also discussed.
This article pointed out that water would be moved by viscous force, inertia force, and shear stress which were provided by the air. Water would spread along two sides of channel because the air velocity would be fully developed gradually. For less water generation, this article only discussed three different inlet air velocity influences so that water removal by increasing air velocity was unknown. For larger water generation, with faster air inlet velocity, the water removal efficiency would be better. Changing the fluid channel made particle water accumulate in corner and in location of blocked channel which would cause the worse effect of water removal.
關鍵字(中) ★ 水管理
★ 質子交換膜燃料電池
★ 水行為模式
關鍵字(英) ★ water behavior
★ water management
★ PEM fuel cell
論文目次 目錄
中文摘要…………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
目錄………………………………………………………………………Ⅲ
圖目錄……………………………………………………………………Ⅴ
符號說明…………………………………………………………………Ⅷ
第一章 序論……………………………………………………………1
1.1 前言………………………………………………………1
1.2 燃料電池工作原理………………………………………2
1.3 質子交換膜燃料電池之構造與運作原理………………3
1.4 文獻回顧…………………………………………………4
1.5 研究動機與目的…………………………………………8
第二章 理論模式………………………………………………………9
2.1 物理模型與基本假設……………………………………9
2.2 統御方程式……………………………………………10
2.2.1 VOF模組…....…………………………………..10
2.2.2 The Volume Fraction Equation…………………..10
2.2.3 動量方程式....……………………………….…..11
2.3 邊界設定………………………………………………12
2.3.1 出入口邊界.....…………………………………..12
2.3.2 壁面邊界…………………………………….…..12
2.4 水的初始設定……………………………………………14
第三章 數值方法………………………………………………………15
3.1 使用軟體………………………………………………15
3.1.1 Gambit模組…....………………………………..15
3.1.2 Fluent模組…………………..…………………..15
3.2 格點設定………………………………………………… 16
3.3 計算流程…….……………………………………………16
第四章 結果與討論……………………………………………………18
4.1小水滴運動模式分析………………………………….…18
4.2大水滴運動模式分析…...…………………………………20
4.3更改流道設計………………………………...……………22
4.3.1 流道中間加擋板..………………...……………..22
4.3.2 流道漸縮…………………….…………………..24
第五章 結論……………………………………………………………26
參考文獻…………………………………………………………………27
參考文獻 參考文獻
1 G. J. M. Janssen and M. L. J. Overvelde, “Water transport in the porton-exchange-membrane fuel cell: measurement of the effective drag coefficient,” Journal of Power Sources, Vol. 101, 2001, pp. 117-125.
2 T. E. Springer, T. A. Zawodzinski and S. Gottesfeld, “Polymer electrolyte fuel cell model,” Journal of Electrochemical Society, Vol. 38, No.8, 1991, pp. 2334-2342.
3 G. H. Guvelioglu and H. G. Stenger, “Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 147, 2005, pp. 95-106.
4 D. Singh, D. M. Lu,and N. Djilali, ”A two-dimensional analysis of mass transport in proton exchange membrane fuel cells,” International Journal of Engineering Science, Vol. 37, 1998, pp. 431-452.
5 X. Li and I. Sabir, “Review of bipolar plates in PEM fuel cells: Flow-field designs,” International Journal of Hydrogen Energy, Vol. 30, 2005, pp. 359-371.
6 T. V. Nguyen, “A gas distributor design for porton exchange membrane fuel cells,” Journal of Electrochemical Society, Vol. 143, No.5 1996, L103-L105.
7 A. C. West and T. F. Fuller, “Influence of rib spacing in proton-exchange membrane electrode assemblies,” Journal of Applied Electrochemistry, Vol. 26, 1996, pp. 557-565.
8 C. Y. Soong, W. M. Yan, C. Y. Tseng, H. C. Liu, F. L. Chen, and H. S. Chu, “Analysis of reactant gas transport in a PEM fuel cell with partially blocked fuel flow channels,” Journal of Power Sources, Vol. 143, 2005, pp. 36-47.
9 J. Scholta, G. Escher, W. Zhang, L. Kuppers, L. Jorisseen, and W. Lehnert,“Investigation on the influence of channel geometries on PEMFC performance,” Journal of power sources, Vol. 155, 2006, pp. 66-71.
10 A. Su, F. B. Weng, C. Y. Hsu, and Y. M. Chen, “Studies on flooding in PEM fuel cell cathode channels,” Internatioal Journal of Hydrogen Energy, Vol. 31, 2006, pp. 1031-1039.
11 D. S. Litster and N. Djilali, “Ex Situ visualization of liquid water transport in PEM fuel cell gas diffusion layers,” Journal of Power Sources, Vol. 154, 2006, pp. 95-105.
12 C. Y. Wang and P. Cheng, ”A multiphase mixture model for multiphase multicomponent transport in capillary porous media I., model development,” International Journal of Heat Mass Transfer, Vol. 39, No. 17, 1996, pp. 3607-3618.
13 C. Y. Wang and P. Cheng, ”A multiphase mixture model for multiphase multicomponent transport in capillary porous media II., Numerical simulation of the transport of organic compounds in the subsurface,” International Journal of Heat Mass Transfer, Vol. 39, No. 17, 1996, pp. 3619-3632.
14 C. Y. Wang, “Two-phase flow and transport,” Handbook of Fuel Cells-Fundamentals, Technology and Applications Vol. 3, 2003, John Wiley & Sons.
15 P. Quan, B. Zhou, A. Sobiesiak, and Z. Liu, “Water behavior in Serpentine micro-channel for proton exchange membrane fuel cell cathode,” Journal of Power Sources, Vol. 152, 2005, pp. 131-145.
16 K. Jiao, B. Zhou, and P. Quan, “Liquid water transport in parallel serpentine channel with manifold on cathode side of a PEM fuel cell stack,” Journal of Power Sources, Vol. 154, 2006, pp. 124-137.
17 C. W. Hirt, and B. D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of Computional Physics, Vol. 39, 1981, pp. 201-225.
18 FLUENT 6.1.22 User's Guide.
19 P. R. Gunjal, V. V. Ranade, and R. V. Chaudhar, “Dynamic of Drop impact on Solid Surface: Experiments and VOF Simulations,” AIChE Journal, Vol. 51, No.1, 2005, pp. 59-78.
20 J. U. Brackbill, D. B. Kothe, and C. Zemach, “ A Comtinuum Method for Modeling Surface Tension,” Journal of Computional Physics, Vol. 100, 1992, pp. 335-354.
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2006-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明