博碩士論文 93333020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.117.141.69
姓名 林盟智(Meng-Jyh Lin)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 具表面裂縫平板受雙軸向拉力之J值估算
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨在探討受內壓容器或構件的J 值估算方法,以具表面
裂縫受雙軸拉力平板為研究模型,評估以參考應力解為基礎的J 值估
算模式的適用性。比較並找出適當的參考應力解,配合有系統的三維
有限元素分析的驗證,重新修正參考應力解以符合有限元素分析結
果。並探討參考應力法估計J 值時的適用範圍及各參數(如受力比λ、
裂縫深度比a/t、裂縫形狀參數a/c、裂縫前緣位置對應的角度φ等)對
其估計準確性的影響。
研究結果顯示不同的雙軸受力比(λ)會影響參考應力解與有限元
素分析解的符合程度,需修正參考應力解。本研究提出對λ=0.5及1.0
之雙軸向受力修正因數η ,經修正後二者得到良好的一致性。另由
有限元素分析結果發現,隨著負荷比增加,不同裂縫幾何參數組合下
的J/Je值逐漸離散,裂縫形狀參數a/c值是造成離散的原因,而負荷比
與材料硬化指數(n)的增加,擴大了離散的幅度。整體而言於負荷比
≦1.25 時與有限元素分析值最大差異量不超過20%。
對表面裂縫而言,裂縫前緣各位置之J值均不相同,參考應力法
對近表面點與裂縫前緣各位置的J值估算亦能與有限元素分析結果吻
合,但對於表面點(φ=0o)位置,鑑於表面點力場的複雜性,參考應力
法並不適用於表面點J值的估算。
經研究結果證實參考應力法可應用於不同應變硬化指數的材
料,參考應力法將J 值估算過程簡化成數個方程式,不需使用曲線轉
化及查表內插等易產生誤差的運算,是可廣泛使用且簡便的J 值估算
工具。
摘要(英) In this study, different J-estimation methods for a surface-cracked plate under
biaxial tension compared and the applicability of the reference stress approach is also
evaluated. Systematic 3-D finite element analyses (FEAs) are performed for
determining the best reference stress solution and providing the guidance for
modification of the reference stress approach. The limit of the application for the
reference stress approach was investigated and the effects of the parameters such as
biaxial ratio (λ), relative crack depth (a/t), aspect ratio (a/c), and the angle related to
the position along the semi-elliptical crack front (φ) are discussed.
Results showed that the biaxial ratio has certain effects on the agreement
between the reference stress approach predictions and FEA results. After being
modified by a modification factor η, the reference stress approach showed much
better estimates of the J value. The FEA results indicated that the estimated value of
J/Je scattered as the load ratio increased. The scattering was attributed to the effects
of aspect ratio (a/c) and enlarged with increasing load ratio and strain-hardening
exponent. However, for all cases considered, the differences between the reference
stress approach and FEA in J-estimation are less than 20% for load ratios below 1.25.
For surface-cracked component, the non-linear J distribution along the crack
front may be different. The proposed reference stress approach in this study
provided good estimations of the J-integral not only at the near surface point but also
at an arbitrary point along the crack front. Due to the complication of crack tip
stress field at the surface point (φ = 0), the J-estimation approach proposed here was
considered as unsuitable for the surface point.
Results showed the proposed reference stress approach of J-estimation were
also applicable to the cracked components with different strain hardening exponent
values. The reference stress approach provided the J estimates in closed-form
equations without using the curve-fitting process or interpolation. Apparently, such
an approach provides a simplified and comprehensive engineering tool for
J-estimation.
關鍵字(中) ★ 有限元素分析
★ 表面裂縫
★ J積分
★ 參考應力
關鍵字(英) ★ J-INTEGRAL
★ REFERENCE STRESS APPROACH
★ SURFACE CRACK
論文目次 List of Tables V
List of Figures VI
第一章 簡介 1
1-1 前言 1
1-2 破壞力學簡介 1
1-3 J積分與J值估計法概述 4
1-4 參考應力的定義及其文獻 9
1-5 研究目的 11
第二章 研究方法 13
2-1雙軸向負荷之表面裂縫模型 13
2-2最適參考應力解的決定 14
2-3三維有限元素分析模型 16
第三章 結果與討論 18
3-1最適參考應力解之J估計與有限元素分析的比較 18
3-2各項參數的影響 20
第四章 結論 24
參考文獻 25
Tables 30
Figures 34
參考文獻 [1] D. G. Mahony, Large Property Damage Loss in the Hydrocarbon-Chemical Industries: A Thirsty-Year Review, 17th Edition, M & M Protection Consultants, New York, USA, 1997.
[2] B. Hayes, “Six Case Histories of Pressure Vessel Failures,” Engineering Failure Analysis, Vol. 3, 1996, pp.157-170.
[3] A. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Philosophical Transactions, Series A, Vol. 221, 1921, pp.163-197.
[4] G. R. Irwin, “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate,” Journal of Applied Mechanics, Vol. 24, 1957, pp. 361-364.
[5] E. Orowan, “Fracture and Strength of Solid,” Report on Progress in Physics, Vol. XII, 1948, pp.185-232.
[6] 小林英男, 破壊力學, 共立出版株式会社, 東京, 1993, p.63.
[7] D. Broek, Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, Dorodrecht, 1982, p. 8.
[8] H. Tada, P. C. Paris, and G. R. Irwin, Stress Analysis of Cracks Handbook, Del Research Co., St. Louis, 1985.
[9] D. P. Rooke and D. J. Cartwright, Compendium of Stress Intensity Factors, Her Majesty’s Stationary Office, London, 1976.
[10] J. C. Newman, Jr, and I. S. Raju, “An Empirical Stress-Intensity Factor Equation for The Surface Crack,” Engineering Fracture Mechanics, Vol.15, 1981, pp. 185-192.
[11] X. Wang, “Fully Plastic J-Integral Solutions for Surface Cracked Plates under Biaxial Loading,” Engineering Fracture Mechanics, Vol. 73, 2006, pp.1581-1595.
[12] G. R. Irwin, “Plastic Zone near a Crack and Fracture Toughness,” pp. IV-63-70 in Mechanical and Metallurgical Behavior of Sheet Materials, ASTIA, Arlington, Virginia, 1960.
[13] D. S. Dugdale, “Yielding in Steel Sheets Containing Slits,” Journal of Mechanics and Physics of Solids, Vol. 8, 1960, pp. 100-106.
[14] A. Saxena, Nonlinear Fracture Mechanics for Engineer, CRC Press, Boca Raton, Florida, 1998, p.55.
[15] A. A. Wells, “Unstable Crack Propagation in Metals - Cleavage and Fast Fracture,” pp. 210-230 in Proceedings of the Crack Propagation Symposium, College of Aeronautics, Cranfield, Vol. 1, 1961.
[16] J. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentrations by Notches and Cracks,” ASME Journal of Applied Mechanics, Vol. 35, 1971, pp. 379-386.
[17] J. D. Eshelby, “Calculation of Energy Release Rate,” pp. 69-84 in Prospects of Fracture Mechanic, edited by H. C. Sih, van Elst, D. Broek, Noordhoff, Leyden, 1975.
[18] A. Saxena, Nonlinear Fracture Mechanics for Engineer, CRC Press, Boca Raton, Florida, 1998, p.84.
[19] T. Hellen, “On the Method of Virtual Crack Extensions,” International Journal of Numerical Methods in Engineering, Vol. 9, 1975, pp. 187-207.
[20] D. Parks, “The Virtual Crack Extension Method for Non-Linear Material Behaviour,” Computer Methods in Applied Mechanics and Engineering, Vol. 12, 1977, pp. 353-364.
[21] V. Kumar and C. F. Shih, “Fully Plastic Crack Solutions, Estimation Scheme and Stability Analyses for the Compact Specimen”, pp. 406-438 in Fracture Mechanics, ASTM STP 700, American Society for Test and Material, Philadelphia, 1980.
[22] G. Yagawa, Y. Kitajima, and H. Ueta, “Three-Dimensional Fully Plastic Solutions for Semi-Elliptical Surface Cracks,” International Journal of Pressure Vessels and Piping, Vol. 53, 1993, pp. 457–510.
[23] R. C. McClung, G. G. Chell, and Y.-D. Lee, “Development of a Practical Methodology for Elastic–Plastic Fully Plastic Fatigue Crack Growth,” NASA Report NASA/CR-1999-209428, National Aeronautics and space Administration, Marshall Space Flight Center, Alabama, 1999.
[24] R. A. Ainsworth, “The Assessment of Defects in Structures of Strain Hardening Materials,” Engineering Fracture Mechanics, Vol. 19, 1984, pp. 633–642.
[25] R6, Assessment of the Integrity of Structures Containing Defects, Revision 4, British Energy, CEGB Research Division, London, 2001.
[26] API, Recommended Practice for Fitness-for-Service, API 579, American Petroleum Institute, Washington, D.C., 2000, p. 2-15.
[27] M. Shiratori, T. Niyoshi, and K. Tanikawa, “Analysis of Stress Intensity Factors for Surface Cracks Subjected to Arbitrarily Distributed Surface Stresses.” pp. 698–705 in Stress Intensity Factors Handbook, Vol. 2, edited by Y. Murakami, Pergamon, Oxford, 1987.
[28] X. Wang and S. B. Lambert, “Stress Intensity Factors for Low Aspect Ratio Semi-Elliptical Surface Cracks in Finite Thickness Plates Subjected to Non-Uniform Stresses,” Engineering Fracture Mechanics, Vol. 51, 1995, pp. 517–532.
[29] Y. Lei, “J-Integral and Limit Load Analysis of Semi-Elliptical Surface Cracks in Plates under Tension,” International Journal of Pressure Vessels and Piping, Vol. 81, 2004, pp. 21-30.
[30] I. W. Goodall and G. A. Webster, “Theoretical Determination of Reference Stress for Partially Penetrating Flaws in Plates,” International Journal of Pressure Vessels and Piping, Vol. 78, 2001, pp. 687-695.
[31] I. Sattari-Far, “Finite Element Analysis of Limit Loads for Surface Cracks in Plates,” International Journal of Pressure Vessels and Piping, Vol. 57, 1994, pp. 237–243.
[32] A. G. Miller, “Review of Limit Loads of Structures Containing Defects,” International Journal of Pressure Vessels and Piping, Vol. 32, 1988, pp. 197-327.
[33] Y.-J. Kim, D.-J. Shim, J.-B. Choi, and Y.-J. Kim, “Approximate J Estimates for Tension-Loaded Plates with Semi-Elliptical Surface Cracks,” Engineering Fracture Mechanics, Vol. 69, 2002, pp. 1447–1463.
[34] Y.-J. Kim, J.-S. Kim, Y.-J. Park, and Y.-J. Kim, “Plastic Limit Pressures for Cracked Pipes Using Finite Element,” International Journal of Pressure Vessels and Piping, Vol.7, 2002, pp. 321-330.
[35] Y.-J. Kim, J.-S. Kim, Y.-J. Park, and Y.-J. Kim, “Non-Linear Fracture Mechanics Analyses of Part Circumferential Surface Cracked Pipes,” International Journal of Fracture, Vol. 116, 2002, pp. 347–375.
[36] Y.-J. Kim, J.-S. Kim, Y.-J. Park, and Y.-J. Kim, “Elastic–Plastic Fracture Mechanics Method for Finite Internal Axial Surface Cracks in Cylinders,” Engineering Fracture Mechanics, Vol. 71, 2004, pp. 925–944.
[37] S. Jansson, “Fully Plastic Plane Stress Solutions for Biaxially Loaded Center-Cracked Plates,” ASME Journal of Applied Mechanics, Vol. 53, 1986, pp. 555–560.
[38] N. P. O’Dowd, O. Kolednik, and V. P. Naumenko, “Elastic–Plastic Analysis of Biaxially Loaded Center-Cracked Plates,” International Journal of Solids and Structure, Vol. 36, 1999, pp. 5639–5661.
[39] R. H. Dodds, C. F. Shih, and T. L. Anderson, “Continuum and Micromechanics Treatment of Constraint in Fracture,” International Journal of Fracture, Vol. 64, 1993, pp. 101–133.
[40] M. M. K. Lee, D. P. Boothman, and A. R. Luxmoore, “Effects of Biaxial Loading on Crack Driving Force and Constraints for Shallow Semi-Elliptical Surface Flaws,” International Journal of Fracture, Vol. 98, 1999, pp. 37–54.
[41] ABAQUS, User’s Manual, Version 6.5, Hibbitt, Karlsson, & Sorensen, Inc., Providence, RI, 2004.
[42] R. S. Barsoum, “On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics,” International Journal for Numerical Methods in Engineering, Vol. 10, 1976, pp. 25-37.
[43] G. C. Sih and Y. D. Lee, “Review of Triaxial Crack Border Stress and Energy Behavior,” Theoretical and Applied Fracture Mechanics, Vol. 12, 1989, pp. 1-17.
[44] J. W. Hutchinson, “Plastic Stress and Strain Field at Crack Tip,” Journal of Mechanics and Physics of Solids, Vol. 16, 1968, pp. 337-347.
[45] J. R. Rice and G. F. Rosengren, “Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material,” Journal of Mechanics and Physics of Solids, Vol. 16, 1968, pp. 1-12.
[46] T. L. Anderson and D. A. Osage, “API 579: A Comprehensive Fitness-for-Service Guide,” International Journal of Pressure Vessels and Piping, Vol.77, 2000, pp. 953-963.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2007-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明