博碩士論文 93343021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.147.27.129
姓名 曾家麟(Chia-lin Tseng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 光電化學法產氫反應器之設計與熱流特性分析
(Design and Thermal-Fluid Analysis of Photoelectrochemical Hydrogen Production Reactor)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 第一部份,探討AM 1.5(G)太陽光於光電化學法產氫的熱力學分析。因裂解水的能量隨著反應器的溫度升高而降低,故利用太陽光長波能量加熱反應器可增加產氫的效率。
半導體光電極能隙的增加會降低光電流的輸出,當AM 1.5(G)太陽光全部激發成電子產生光電流,理論最大的光電流為63.8 mA/cm2。對半導體能隙2.0 eV及3.0 eV的理論最大光電流分別為12.4 mA/cm2及1.29 mA/cm2。太陽光理論最大功率轉換效率為44.1 %,對能隙2.0 eV及3.0 eV的功率轉換效率則分別為24.7 %及3.9 %。探討溫度及量子效率上,當溫度為647 K及量子效率為30 %時,半導體能隙為2.0 eV及3.0 eV的理論最大產氫量分別為47.5 L/m2-hr及8.0 L/m2-hr;而理論最大產氫效率則分別為16.1 %及2.7 %。增加量子效率較提升反應器溫度能更有效地增加產氫量及產氫量效率,但若固定量子效率下,提升反應器溫度對增加產氫量及產氫效率為一非常有效的方法。
第二部份,探討4種不同光電化學法產氫反應器的熱傳設計及熱流特性。AM 1.5(G)太陽光根據半導體光電極的能隙,分為短波及長波。短波能量用來產生電子與電洞對,長波能量則利用於加熱反應器。由於裂解水所需的能量隨溫度升高而降低,故利用長波能量加熱反應器可增加系統效率。因此,長波能量如何利用來加熱反應器,為非常重要的課題。
結果顯示,越多長波能量被反應器所吸收,產氫量及產氫效率越高。D設計下,太陽光強度為4000 W/m2及量子效率為30 %時,產氫量及產氫效率於能隙2.0 eV分別為186.5 L/m2-hr及15.9 %。光電化學法產氫反應器參數設計的影響,將於本論文中詳細討論。
摘要(英) In partⅠ, the thermodynamic analysis of photoelectrochemical (PEC) hydrogen production is performed in this thesis for air mass 1.5 solar irradiation. Because the energy required for splitting water decreases as temperature is increased, heating the system by using the long wavelength energy will increase the system efficiency.
As the energy band gap of the photoelectrode increases, the induced photo-current is decreased. If photons absorbed are all excited, the maximum photo-current is 63.8 mA/cm2. For energy band of 2.0 eV and 3.0 eV, the maximum photo-current is respectively 12.4 mA/cm2 and 1.29 mA/cm2. The maximum power conversion efficiency of a PEC cell is 44.1 %. For 2.0 eV and 3.0 eV, the power conversion efficiency is 24.7 % and 3.9 %, respectively. At 647 K and quantum efficiency=30 %, the maximum hydrogen production rate is 47.5 L/m2-hr and 8.0 L/m2-hr for 2.0 eV and 3.0 eV, and the maximum solar-to-hydrogen efficiency is 16.1 % and 2.7 % for 2.0 eV and 3.0 eV, respectively. In order to increase the maximum hydrogen production rate and the solar-to-hydrogen efficiency, it is more effective to raise the quantum efficiency than raising the reaction temperature. But for fixed quantum efficiency, raising the reactor temperature is also an effective way to increase the solar-to-hydrogen efficiency.
In part Ⅱ, the heat transfer and flow characteristics of a PEC hydrogen generation reactor are investigated numerically. Four different reactor designs are considered. The solar irradiation is separated into short and long wavelength parts depending on the energy band gap of the photoelectrode used. While short wavelength part is used to generate electron and hole pairs, the long wavelength part is used to heat the system. Because the energy required for splitting water decreases as temperature is increased, heating the reactor by using the long wave energy increases the system efficiency. Thus, how the long wavelength energy is absorbed by the reactor is very important.
The results show that more long wavelength energy kept inside the reactor can increase the solar-to-hydrogen efficiency. For energy band gap of 2.0 eV photoelectrode, careful reactor design can increase solar-to-hydrogen efficiency by 9.7 %. For design D under 4000 W/m2 irradiation and a quantum efficiency of 30 %, is found to be 15.9 % and the hydrogen volume production rate is 186.5 L/m2-hr for 2.0 eV. Effects of several parameters on the PEC hydrogen reactor are discussed in detail.
關鍵字(中) ★ 太陽能產氫
★ 光電化學法
★ 反應器設計
★ 產氫量及產氫效率
關鍵字(英) ★ photoelectrochemical method
★ solar-to-hydrogen efficiency
★ hydrogen volume production
★ reactor design
★ solar hydrogen production
論文目次 摘 要 i
Abstract iii
誌 謝 v
目 錄 vi
圖目錄 ix
表目錄 xiv
符號表 xv
第一章 前 言 1
1.1 能源概述 1
1.2 氫能技術 5
1.3 光電化學法產氫系統 11
1.3.1 光電化學法產氫原理 11
1.3.2 太陽輻射之特性 17
1.3.3 光電化學法產氫系統之阻抗 20
第二章 文獻回顧 23
2.1 半導體之能隙 24
2.2 光電極材料之演進 28
2.3 熱力學之分析 34
2.4 反應器之架構 39
2.5 研究動機與主題 51
第三章 物理模型與數值方法 52
3.1 物理模型 52
3.2 輻射傳輸方程式 62
3.3 數值模型驗證 70
第四章 結果與討論 76
4.1 第一部份 76
4.1.1 光電流的影響 76
4.1.2 PEC反應器I-V曲線特性 80
4.1.3 光子轉換為電子之能量損失 82
4.1.4 理論最大產氫量 84
4.1.5 理論最大產氫效率 86
4.2 第二部份 88
4.2.1 反應器設計的影響 97
4.2.2 太陽光強度的影響 107
4.2.3 玻璃厚度G及水厚度W的影響 112
4.2.4 量子效率的影響 117
第五章 結 論 122
第六章 未來建議 125
參考文獻 126
作者簡介 138
圖目錄
圖1-1 各種內燃機引擎與燃料電池系統所產生之二氧化碳濃度比較 [6] 3
圖1-2 全球能源過去利用趨勢與未來市場預測圖 [24] 10
圖1-3 n型半導體光電化學法產氫系統之示意圖 [25] 13
圖1-4 n型半導體光電化學法產氫之能帶操作原理示意圖 [26] 13
圖1-5 pH=2.0下,不同氧化物半導體與水裂解氧化還原電位之關係 [27] 16
圖1-6 太陽輻射能量光譜圖 [28] 19
圖1-7 不同能隙所能利用之太陽輻射能量 [28] 19
圖1-8 不同能隙下,太陽光子數量圖 [29] 22
圖2-1 直接與間接能隙半導體再結合效應之光與熱轉換過程。(a) 直接能隙半導體之光轉換過程;(b) 間接能隙半導體之熱轉換過程 [32]。 25
圖2-2 壓力1 bar與500 bar下,理論電解水所需要之電位關係 [57] 36
圖2-3 太陽光譜中,長波輻射與短波輻射利用範圍示意圖 [58] 36
圖2-4 不同半導體能隙下,可利用的太陽光長波能量比例 [59] 37
圖2-5 太陽光照射下,PEC產氫長短波輻射能量利用示意圖 [60, 61] 37
圖2-6 雙光電極系統電極-電解液電位之能量關係圖 [66] 42
圖2-7 混合式光電極系統 [48] 43
圖2-8 不同硫化物濃度下,硫化鎘電極形成光電流與電壓之關係 [67, 68] 47
圖2-9 加裝玻璃(塗佈SnO2:F)下,ITO塗佈非晶矽薄膜產氫反應器示意圖 [69] 47
圖2-10 彈性塑膠袋狀產氫反應器 [70] 48
圖2-11 剛體球狀產氫反應器 [70] 49
圖2-12 Z機制原理示意圖 [72, 73] 50
圖2-13 Z機制之雙反應槽產氫反應器示意圖 [71] 50
圖3-1 光電化學法產氫反應器之示意圖 54
圖3-2 AM 1.5(G)太陽光譜中,能隙與能量百分比關係 55
圖3-3 FTO與玻璃吸收光譜 56
圖3-4 水吸收光譜 [77] 56
圖3-5 太陽能聚光系統 57
圖3-6 輻射傳輸過程之能量變化示意圖 65
圖3-7 輻射方向立體角離散座標系統示意圖 66
圖3-8 不透明表面輻射傳遞邊界條件示意圖 69
圖3-9 Williams等人 [82]在光學厚度1.0下,不同輻射模組之壁面無因次 73
圖3-10 Williams等人 [82]在光學厚度5.0下,不同輻射模組之壁面無因次化結果與本論文計算比對圖 73
圖3-11 太陽光強度4000 W/m2與QE=30 %下,A設計及D設計反應器的 網格獨立性驗證 74
圖3-12 太陽光強度4000 W/m2與QE=30 %下,A設計及D設計反應器的立體角數量獨立性驗證 74
圖4-1 AM 1.5(G)太陽照射與對應波長下的光子數量關係圖 78
圖4-2 AM 1.5(G)太陽照射與對應波長下可激發的光電流關係圖 78
圖4-3 AM 1.5(G)太陽光I-V曲線圖 81
圖4-4 AM 1.5(G)太陽光,最大可激發電子能量及有效可激發電子能量關係圖 83
圖4-5 不同量子效率下,300 K及647 K理論最大產氫量 85
圖4-6 不同量子效率下,300 K及647 K理論最大產氫效率 87
圖4-7 傳統雙電極反應器及多接合單電極反應器設計示意圖。 92
圖4-8 不同能隙下,傳統雙電極反應器及多接合單電極反應器的陽極平均溫度曲線圖 93
圖4-9 水的自由能隨著不同溫度變化關係圖 93
圖4-10 太陽光強度6000 W/m2、QE=30 %、G=5 mm及W=30 mm,反應器Ι、Ⅱ及Ⅲ於Eg=2.0 eV的溫度分佈與速度向量圖 95
圖4-11 太陽光強度4000 W/m2、QE=30 %及水厚度W=10 mm,四種不同反應器設計於不同能隙的光電極平均溫度曲線圖 99
圖4-12 太陽光強度4000 W/m2、QE=30 %及水厚度W=10 mm,四種不同反應器設計於不同能隙的溫度分佈圖 103
圖4-13 太陽光強度4000 W/m2、QE=30 %及水厚度W=10 mm,四種不同反應器設計於Eg=2.0 eV的速度向量與溫度分佈圖 104
圖4-14 太陽光強度4000 W/m2、QE=30 %及水厚度W=10 mm,四種不同反應器設計於不同能隙的產氫量關係圖 106
圖4-15 太陽光強度4000 W/m2、QE=30 %及水厚度W=10 mm,四種不同反應器設計於不同能隙的產氫效率關係圖 106
圖4-16 QE=30 %、W=10 mm、G=10 mm及A=20 mm下,D設計反應器於不同太陽光強度的光電極平均溫度曲線圖 109
圖4-17 QE=30 %、W=10 mm、G=10 mm及A=20 mm下,D設計反應器於不同太陽光強度的產氫量關係圖 110
圖4-18 QE=30 %、W=10 mm、G=10 mm及A=20 mm下,D設計反應器於不同太陽光強度的產氫效率關係圖 110
圖4-19 Eg=2.0 eV、QE=30 %、W=10 mm、G=10 mm及A=20 mm下,D設計反應器於不同太陽光強度的溫度分佈及速度向量圖 111
圖4-20 太陽光強度4000 W/m2、QE=30 %及A=20 mm下,D設計反應器於不同G及W的光電極平均溫度曲線圖 114
圖4-21 太陽光強度4000 W/m2、QE=30 %及A=20 mm下,D設計反應器於不同G及W的產氫效率關係圖 114
圖4-22 Eg=2.0 eV、QE=30 %、A=20 mm及4000 W/m2下,不同G及W設計反應器的溫度分佈及速度向量圖 116
圖4-23 太陽光強度4000 W/m2、G=5 mm、W=10 mm及A=20 mm下,D設計反應器於不同QE的光電極平均溫度曲線圖 119
圖4-24 太陽光強度4000 W/m2、G=5 mm、W=10 mm及A=20 mm下,D設計反應器於不同QE的產氫量關係圖 120
圖4-25 太陽光強度4000 W/m2、G=5 mm、W=10 mm及A=20 mm下,D設計反應器於不同QE的產氫效率關係圖 120
圖4-26 太陽光強度4000 W/m2、G=5 mm、W=10 mm及A=20 mm下,D設計反應器於不同QE的溫度分佈及速度向量圖 121
表目錄
表一 各種不同PEC系統之實驗光電極與效率 29
表二 反應器材料之物理參數 58
表三 Williams等人 [82]不同輻射條件下結果與本論文計算數據比對表 75
表四 AM 1.5(G)太陽照射與對應波長下可激發的能量百分比及光電流 79
參考文獻 [1] H. Bob and J. Nicola, “Brace yourself for the end of cheap oil”, New Scientist, Vol. 179, pp. 9-10, 2003.
[2] S.Z. Baykara, “Hydrogen as fuel: a critical technology?”, International Journal of Hydrogen Energy, Vol. 30, pp. 545-553, 2005.
[3] http://www.eere.energy.gov/topics/hydrogen_fuel_cells.html
[4] M. Momirlan and T.N. Veziroglu, “Current status of hydrogen energy”, Renewable and Sustainable Energy Reviews, Vol. 6, pp. 141-179, 2002.
[5] J.I. Levene, M.K. Mann, R.M. Margolis and A. Milbrandt, “An analysis of hydrogen production from renewable electricity sources”, Solar Energy, Vol. 81, pp. 773-780, 2007.
[6] T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects”, International Journal of Hydrogen Energy, Vol. 27(10), pp. 991-1022, 2002.
[7] R.G. Lemus and J.M.M Duart, “Updated hydrogen production costs and parities for conventional and renewable technologies”, International Journal of Hydrogen Energy, Vol. 35, pp. 3929-3936, 2010.
[8] R.D. Levie, “The electrolysis of water”, Journal of Electroanalytical Chemistry, Vol. 476(1), pp. 92-93, 1999.
[9] H. Ohya, M. Yatabe, M. Aihara, Y. Negishi and T. Takeuchi, “Feasibility of hydrogen production above 2500 K by direct thermal decomposition reaction in membrane reactor using solar energy”, International Journal of Hydrogen Energy, Vol. 27, pp. 369-376, 2002.
[10] M. Roeb, M. Neises, J.P. Sack, P. Rietbrock, N. Monnerie, J. Dersch, M. Schmitz and C. Sattler, “Operational strategy of a two-step thermochemical process for solar hydrogen production”, International Journal of Hydrogen Energy, Vol. 34, pp. 4537-4545, 2009.
[11] J. Fedorowski and W.R. Lacourse, “A review of post-column photochemical reaction systems coupled to electrochemical detection in HPLC”, Analytica Chimica Acta, Vol. 657, pp. 1-8, 2010.
[12] D. Dasa and T.N. Veziroglu, “Hydrogen production by biological processes: a survey of literature”, International Journal of Hydrogen Energy, Vol. 26, pp. 13-28, 2001.
[13] R.C. Saxena, D.K. Adhikari and H.B. Goyal, “Biomass-based energy fuel through biochemical routes: A review”, Renewable and Sustainable Energy Reviews, Vol. 13, pp. 167-178, 2009.
[14] S. Licht, “Solar water splitting to generate hydrogen fuel-a photothermal electrochemical analysis”, International Journal of Hydrogen Energy, Vol. 30, pp. 459-470, 2005.
[15] P. Lianos, “Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell. The concept of the Photofuelcell: A review of a re-emerging research field”, Journal of Hazardous Materials, Vol. 185, pp. 575-590, 2011.
[16] Z. Zhang, M.F. Hossain and T. Takahashi, “Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation”, International Journal of Hydrogen Energy, Vol. 35, pp. 8528-8535, 2010.
[17] N. Terasaki, K. Kakutani, T. Akiyamab and S. Yamada, “A double-driven photoelectrochemical cell”, Synthetic Metals, Vol. 139, pp. 511-514, 2003.
[18] I.E. Paulauskas, J.E. Katz, G.E. Jellison, N.S. Lewis and L.A. Boatner, “Photoelectrochemical studies of semiconducting photoanodes for hydrogen production via water dissociation”, Thin Solid Films, Vol. 516, pp. 8175-8178, 2008.
[19] M. Antoniadou and P. Lianos, “Production of electricity by photoelectrochemical oxidation of ethanol in a PhotoFuelCell”, Applied Catalysis B: Environmental, Vol. 99, pp. 307-313, 2010.
[20] K. Tennakone, P.V.V. Jayaweera and P.K.M. Bandaranayake, “Dye-sensitized photoelectrochemical and solid-state solar cells: charge separation, transport and recombination mechanisms”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 158, pp. 125-130, 2003.
[21] S.K. Deya, N.B. Manika, S. Bhattacharyab and A.N. Basu, “A dye/polymer based solid state thin film photoelectrochemical cell used for light detection”, Synthetic Metals, Vol. 118, pp. 19-23, 2001.
[22] O.N. Srivastava, R.K. Karn and M. Misra, “Semiconductor-septum photoelectrochemical solar cell for hydrogen production”, International Journal of Hydrogen Energy, Vol. 25, pp. 495-503, 2000.
[23] N. Getoff, “Photoelectrochemical and photocatalytic methods of hydrogen production: A short review”, International Journal of Hydrogen Energy, Vol. 15(6), pp. 407-417, 1990.
[24] S. Dunn, “Hydrogen futures: toward a sustainable energy system”, International Journal of Hydrogen Energy, Vol. 27, pp. 235-264, 2002.
[25] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, Vol. 238, pp. 37-38, 1972.
[26] V. Urade, “Photoelectrochemical generation of hydrogen”, Report of chemical engineering, Purdue university, 2006.
[27] S. Chandra, “Photoelectrochemical solar cells”, New York: Gordon and Breach, 1985.
[28] M. Modest, “Radiative heat transfer”, McGraw-Hill, New York, 1993.
[29] Oriel-Instruments. Book of photon tools, 1999.
[30] R.F. Service, “Catalyst boosts hopes for hydrogen bonanza”, Science, Vol. 297, pp. 2189-2190, 2002.
[31] S.U.M. Khan, M. Al-Shahry and W.B. Ingler, “Efficient photochemical water splitting by a chemically modified n-TiO2”, Science, Vol. 297, pp. 2243-2245, 2002.
[32] B. Streetman and S. Banerjee, Solid State Electronic Devices, Prentice Hall, Inc, New Jersey, 2000.
[33] J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager Ⅲ, E.E. Haller, H. Lu and W.J. Schaff, “Effects of the narrow band gap on the properties on InN”, The Journal of Physical Review B, Vol. 66(20), pp. 2014031-2014034, 2002.
[34] http://www.lbl.gov/msd/PIs/Walukiewicz/02/02_8_Full_Solar_Spectrum.html
[35] http://spie.org/x26116.xml?highlight=x2358&ArticleID=x26116
[36] J.R. Bolton, “Solar photoproduction of hydrogen: A review”, Solar Energy, Vol. 57(1), pp. 37-50, 1996.
[37] M.D. Archer and J.R. Bolton, “Requirements for ideal performance of photochemical and photovoltaic solar energy converters”, The Journal of Physical Chemistry, Vol. 94, pp. 8028-8036, 1990.
[38] A. Fujishima, K. Kohayakawa and K. Honda, “Hydrogen production under sunlight with an electrochemical photo-cell”, Journal of The Electrochemical Society, Vol. 122, pp. 1487-1489, 1975.
[39] A.K. Ghosh and H.P. Muruska, “Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes”, The Journal of The Electrochemical Society, Vol. 124, pp. 1516-1512, 1977.
[40] J.F. Houlihan, D.B. Armitage, T. Hoovler, D. Bonaquist, D.P. Madacsi and L.N. Mulay, “Doped polycrystalline TiO2 electrodes for the photo-assisted electrolysis of water”, Materials Research Bulletin, Vol. 13, pp. 1205-1211, 1978.
[41] J.G. Mavroides, D.I. Tchernev, J.A. Kafalas and D.F. Kolesar, “Photoelectrolysis of water in cell with TiO2 anodes”, Materials Research Bulletin, Vol. 10(10), pp. 1023-1030, 1975.
[42] J. Akikusa and S.U.M Khan, “ Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell”, International Journal of Hydrogen Energy, Vol. 22(9), pp. 875-882, 1997.
[43] A.J. Nozik, “Photoelectrolysis of water using semiconducting TiO2 crystals”, Nature, Vol. 257, pp. 383-386, 1975.
[44] J.G. Mavroides, J.A. Kafalas and D.F. Kolesar, “Photoelectrolysis of water in cells with SrTiO3 anodes”, Applied Physics Letters, Vol. 28, pp. 241-243, 1976.
[45] M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson and D.S. Ginley, “Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential”, Journal of the American Chemical Society, Vol. 98(10), pp. 2774-2779, 1976.
[46] O. Khaselev and J.A. Turner, “A monolithic photovoltaic- photoelectrochemical device for hydrogen production via water splitting”, Science, Vol. 280, pp. 425-427, 1998.
[47] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, “Efficient solar water splitting, Exemplified by RuO2-catalyzed AlGaAs/Si Photoelectrolysis”, The Journal of Physical Chemistry B, Vol. 104, pp. 8920-8924, 2000.
[48] H. Morisaki, T. Watanabe, M. Iwase and K. Yazawa, “Photoelectrolysis of water with TiO2-covered solar-cell electrodes”, Applied Physics Letters, Vol. 29(6), pp. 338-340, 1976.
[49] N. Giordano, V. Antonucci, S. Cavallaro, R. Lembo and J.C.J. Bart, “Photoassisted decomposition of water over modified rutile electrodes”, International Journal of Hydrogen Energy, Vol. 7(11), pp. 867-872, 1982.
[50] T. Watanabe, A. Fujishima and K. Honda, “Photoelectrochemical reactions at SrTiO3 single crystal electrode”, Bulletin of the Chemical Society of Japan, Vol. 49(2), pp. 355-358, 1976.
[51] M. Okuda, K. Yoshida and N. Tanaka, “Photoeffects on semiconductor ceramics electrodes”, Japanese Journal of Applied Physics, Vol. 15(8), pp. 1599, 1976.
[52] D. Laser and A.J. Bard, “Semiconductor electrodes”, Journal of the Electrochemical Society, Vol. 123(12), pp. 1828-1832, 1976.
[53] V. Guruswamy, O.J. Murphy, V. Young, G. Hildreth and O.M. Bockris, “Photoelectrochemical behavior and surface characterization of some lanthanum-based perovskite oxide electrodes”, Solar Energy Materials, Vol. 6(1), pp. 59-83, 1981.
[54] M.Y. El Zayat, A.O. Saed, M.S. El-Dessouki, “Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes”, International Journal of Hydrogen Energy, Vol. 23(4), pp. 259-266, 1998.
[55] P.D. Fleischauer and J.K. Allen, “ Photochemical hydrogen formation by the use of titanium dioxide thin-film electrodes with visible-light excitation”, The Journal of Physical Chemistry, Vol. 82(4), pp. 432-438, 1978.
[56] T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell, “Photoelectrochemical properties of the TiO2-Pt system in aqueous solutions”, International Journal of Hydrogen Energy, Vol. 27(1), pp. 19-26, 2002.
[57] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting”, International Journal of Hydrogen Energy, Vol. 26, pp. 653-659, 2001.
[58] S. Licht, “Efficient solar generation of hydrogen fuel-a fundamental analysis”, Electrochemistry Communications, Vol. 4, pp. 790-795, 2002.
[59] S. Licht, L. Halperin, M. Kalina, M. Zidmanab and N. Halperinb, “Electrochemical potential tuned solar water splitting”, Chemical Communications, pp. 3006-3007, 2003.
[60] S. Licht, “Solar water splitting to generate hydrogen fuel: photothermal electrochemical analysis”, The Journal of Physical Chemistry B, Vol. 107, pp. 4253-4260, 2003.
[61] S. Licht, “Solar water splitting to generate hydrogen fuel-a photothermal electrochemical analysis”, International Journal of Hydrogen Energy, Vol. 30, pp. 459-470, 2005.
[62] S. Licht, S. Ghosh, H. Tributsch and S. Fiechter, “ High efficiency solar energy water splitting to generate hydrogen fuel: Probing RuS2 enhancement of multiple band electrolysis”, Solar Energy Materials & Solar Cells, Vol. 70, pp. 471-480, 2002.
[63] S. Dutta, J.H. Morehouse and J.A. Khan, “Numerical analysis of laminar flow and heat transfer in a high temperature electrolyzer”, International Journal of Hydrogen Energy, Vol. 22(9), pp. 211-219, 1997.
[64] M.A. Rosen, “Energy and exergy analysis of electrolytic hydrogen production”, International Journal of Hydrogen Energy, Vol. 20(7), pp. 547-553, 1995.
[65] C.L Tseng, C.J. Tseng and J.C. Chen, “Thermodynamic analysis of a photoelectrochemical hydrogen production system”, International Journal of Hydrogen Energy, Vol. 35, pp. 2781-2785, 2010.
[66] A.J. Nozik, “p-n photoelectrolysis cells”, Applied Physics Letters, Vol. 29(3), pp. 150-153, 1976.
[67] M. Grzegorz, K. Atsuo, M. Sergiy, T. Araib, K. Shinodab and K. Tohjib, “Optimization of a two-compartment photoelectrochemical cell”, International Journal of Hydrogen Energy, Vol. 28, pp. 919-926, 2003.
[68] M. Mridula, R.N. Pandey and O.N. Srivastava, “Solar hydrogen production employing n-TiO2 SC-CEP photoelectorchemical solar cell”, International Journal of Hydrogen Energy, Vol. 22(5), pp. 501-508, 1997.
[69] N.A Kelly and T.L. Gibson, “Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting”, International Journal of Hydrogen Energy, Vol. 31, pp. 1658-1673, 2006.
[70] N.A. Kelly and T.L. Gibson, “Solar energy concentrating reactors for hydrogen production by photoelectrochemical water splitting”, International Journal of Hydrogen Energy, Vol. 33, pp. 6420-6431, 2008.
[71] C.C. Lo, C.W Huang, C.H Liao and J.C.S. Wu, “Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting”, International Journal of Hydrogen Energy, Vol. 35, pp. 1523-1529, 2010.
[72] K. Sayama, R. Yoshida, H. Kusama, K. Okabe, Y. Abe and H. Arakawa, “Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system”, Chemical Physics Letters, Vol. 277, pp. 387-391, 1997.
[73] S.W. Bae, S.M. Ji, S.J. Hong, J.W. Jang and J.W. Lee, “Photocatalytic overall water splitting with dual-bed system under visible light irradiation”, International Journal of Hydrogen Energy, Vol. 34, pp. 3243-3249, 2009.
[74] J.K. Goodyear and V.L. Lindberg, “Low absorption float glass for back surface solar reflectors”, Solar Energy Materials, Vol. 3, pp. 57-67, 1980.
[75] P.H. Theunissen and W.A. Beckman, “Solar transmittance characteristics of evacuated tubular collectors with diffuse back reflectors”, Solar Energy, Vol. 35(4), pp. 311-320, 1985.
[76] http://rredc.nrel.gov/solar/spectra/am1.5/
[77] D.J. Segelstein, “The Complex Refractive Index of Water”, Report of University of Missouri-Kansas City, 1981.
[78] J. Boussinesq, “Theories anaytique de la chaleur”, Gauthier-Villars, Paris, 1903.
[79] S.V. Patankar, “Numerical heat transfer and fluid flow”, McGraw-Hill, Washington, 1980.
[80] J.R. Howell, “Thermal radiation heat transfer”, Hemisphere, Washington, 1992.
[81] B.G. Carlson and K.D. Lathrop, “Discrete-ordinates angular quadrature of the neutron transport equation”, Technical Information Series Report, Los Alamos Scientific Laboratory, 1965.
[82] M.L. Williams, A. Yucel and S. Acharya, “Natural convection and radiation in a square enclosure”, Numerical Heat Transfer Part A, Vol. 15, pp. 261-278, 1989.
[83] E.R. Williams, J.E. Faller and H.A. Hill, “New experimental test of Coulomb's Law: A laboratory upper limit on the photon rest mass”, Physical Review Letters, Vol. 26, pp. 721-724, 1971.
[84] http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elefor.html#c3
[85] A. Kay, L. Cesar and M. Gratzel, “New benchmark for water photooxidation by nanostructured α-Fe2O3 films”, Journal of the American Chemical Society, Vol. 128, pp. 15714-15721, 2006.
[86] J.L. Cao, Z.C. Wu and J.Q. Zhang, “Photostability study of nanoporous TiO2 film electrodes in different pH solutions”, Journal of Electroanalytical Chemistry, Vol. 595, pp. 71-77, 2006.
[87] J. Nowotny, C.C. Sorrell, T. Bak and L.R. Sheppard, “Solar-hydrogen: Unresolved problems in solid-state science”, Solar Energy, Vol. 78, pp. 593-602, 2005.
[88] E.L. Miller, R.E. Rocheleau and X.M. Deng, “Design considerations for a hybird amorphous silicon/photoelectrochemical multijunction cell for hydrogen production”, International Journal of Hydrogen Energy, Vol. 28, pp. 615-623, 2003.
[89] A. Kudo, “Development of photocatalyst materials for water splitting”, International Journal of Hydrogen Energy, Vol. 31, pp. 197-202, 2006.
[90] A. Kudo, “Recent progress in the development of visible light-driven powdered photocatalysts for water splitting”, International Journal of Hydrogen Energy, Vol. 32, pp. 2673-2678, 2007.
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2011-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明