![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:22 、訪客IP:3.139.55.240
姓名 陳柏辰(Po-chen Chen) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 Al-XSi, Al-YMg 合金熱合氧化膜與純鋁陽極皮膜之研究
(Thermally Formed Oxide Films of (Al-XSi, Al-YMg) Aluminum Alloys and the Pure Aluminum Anodic Oxide Growth Behavior)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文主要是觀察在不同氣氛下鋁合金熱合氧化膜的成長機制及氫對於鋁合金的陽極行為之觀察。研究方向分成兩個部份:第一部份為鋁矽和鋁鎂合金在不同氣氛下的熱合氧化膜的成長機制;第二部份為氫對於鋁合金的陽極行為之觀察。首先, 第一部份是在不同氣氛下
鋁合金的熱合氧化膜, 使用TGA、XRD 以及EPMA 分析Al–XSi,
Al-YMg 合金在不同氣氛下加熱時的重量變化。Al-1.2%Si 合金試片在空氣和氮氣氣氛中加熱時, 所生成的氧化膜是鬆散的, 並且由Gibbsite、Diaspore、γ -氧化鋁、金屬鋁及矽所組成。Al- 2 和3.5wt%Mg 合金在空氣與氮氣中加熱, Al-2 wt% Mg 之熱合氧化膜係由γ- alumina、MgO、Spinel、Gibbsite 所組成。至於在Al-3.5wt%Mg 試片的熱合氧化膜中則出現大量的MgO, 而不見Spinel。在氮氣中加熱至773K( < 1.94 h),Al-3.5wt%Mg 試片產生Gibbs i t e 與γ-alumina 的量比Al-2wt%Mg 試片多,若延長時間至6h 試片中的氮化鋁(AlN)( 或氧化鎂(MgO)) 含量較先前的試片增加許多。
本研究的第二部分是鋁合金基地中氫含量對陽極皮膜的影響, 通入定電流,量測電壓(V)對時間( t )的變化,將電壓-時間曲線進行微分,可以判斷各階段的能量消耗。研究結果顯示, 氫含有會影響第三階段的陽極能量消耗。當在第二階段後期電壓超過25V 以及第二加第三的能量消耗達到7 . 4 J / cm2 時, 陽極孔洞容易發生分支或合併, 並且在第三階段的微分曲線會有跳動現象。第二階段末期高電壓和高氫的試片, 在硫酸溶液所生長的陽極氧化膜會有Boehmi t e。本研究以一個獨特的工具, 了解純鋁試片的陽極生長行為, 陽極孔洞會有分支或合併現象以及陽極皮膜中會有部分結晶, 可以在第三階段的微分曲線跳中發現。
摘要(英) This thesis aimed at investigating thermally formed oxide films on aluminum alloys heated in different gases and hydrogen content on development of anodic aluminum oxide growth behavior. The study can be divided into two main parts. First, the thermally formed oxide films on Al-XSi and Al-YMg alloy heated in different gases. Second, the effects of hydrogen content on development of anodic aluminum oxide film on pure aluminum were observed.
Part I: Thermally formed oxide films on Al–XSi, Al-YMg alloys heated in different gases. The XRD, EPMA and TGA analysis testing was used to polished samples of Al–XSi and Al-YMg alloys. The thermally formed surface oxide films on the Al–1.2wt% Si alloy samples heated in air and in nitrogen gas possessed loose structures, which comprised mainly γ-alumina, Diaspore, and Gibbsite, along with metallic silicon and/or aluminum. Weight changes in Al-2 and 3.5wt% Mg samples were first heated in a dry air atmosphere. The oxide film formed on the Al-2wt% Mg sample comprised γ-alumina, MgO, Spinel and Gibbsite. The film formed on the Al-3.5wt%Mg sample contained large quantities of MgO, but no Spinel.
The samples were then heated in a nitrogen gas atmosphere for <1.9 h. The Al-3.5wt% Mg sample contained greater amounts of Gibbsite and γ-alumina than did the Al-2 wt% Mg sample. The latter yielded a greater amount of AlN (and/or MgO). After an extended holding time
(~6 h), the Al-3.5wt% Mg sample contained a greater amount of AlN (and/or MgO), and its weight increased remarkably.
Part II: The effect of hydrogen content on development anodic aluminum oxide growth behavior. To ensure constant current densities, voltage-time (V-t) curves were recorded during the experiment. The differential ΔV/Δt curves were plotted in order to compute the energy consumed at different steps of anodization. Experimental observations showed that differences in hydrogen content affected the energy consumed in 3 steps in the process that we defined. When the voltage response at the end of step 2 exceeded 25 V, the energy consumed in steps 2 + 3 reached or exceeded 7.4 J/cm2, and the pore channels branched or merged, creating a spike in the ΔV/Δt curves in step 3.
Combining the effects of the high voltage response at the end of step 2 and the high hydrogen content in the Al samples, the anodic aluminum oxide (AAO) film formed in the sulfuric acidic solution, produced crystallized boehmite. This study proposes a unique tool for understanding certain special anodic behaviors of pure Al from which the branching or merging of pore channels and the partial
crystallization of the AAO film can be ascertained via irregularities in ΔV/Δt curves obtained in step 3.
關鍵字(中) ★ 陽極
★ 陽極氧化膜
★ 氫
★ 鋁合金
★ 熱合氧化膜關鍵字(英) ★ Anodic
★ Aluminum
★ Thermally Formed Oxide論文目次 中文摘要 i
Abstract iii
Table of Contents v
List of Tables vii
List of Figures viii
Abbreviations and Symbols xii
Chapter 1 Introduction 1
1.1 Thermally Formed Oxide Films on Al–XSi, Al-YMg Alloys Heated in Different Gases 1
1.2 Anodic alumina oxide films 3
Chapter 2 Experimental Procedure 10
2.1 Thermally Formed Oxide Films on Aluminum Alloy 10
2.2 Anodic Alumina Oxide 11
Chapter 3 17
Thermally Formed Oxide Films on Aluminum Alloys 17
Heated in Different Gases 17
3.1 Thermally Formed Oxide Films on Alloys Heated in Air Gases 17
3.1.1 Al–1.2wt% Si Alloy 17
3.1.2 Al–2 and 3.5wt% Mg Alloys 20
3.2 Formation of a Surface Oxide Film in a Nitrogen Atmosphere 24
3.2.1 Al–1.2wt% Si Alloy 24
3.2.2 Al–2 and 3.5wt% Mg Alloys 25
Chapter 4 44
Effect of Hydrogen Content on Development of Anodic Aluminum Oxide Film on Pure Aluminum 44
4.1 Step 1 46
4.2 Steps 2 and 3 47
4.3 Branched and Merged Porous Channels 48
4.4 Crystallization of AAO Film 49
Chapter 5 Conclusion 65
5.1 Conclusions 65
Appendix 67
References 71
List of Tables
Table 2- 1 Samples (diameter: 3 mm, thickness: 6 mm) tested for hydrogen content by HORIBA (EMGA-521). The values determined from this testing are also listed (cm3/100g Al). 14
Table 4- 1 Measured voltage at each step (V0, V1, V2, and V3) and processing time (t1, t2, and t3), along with energy consumed in steps 1, 2, and 3 for samples 1H and 1L anodized under different conditions. 64
List of Figures
Fig. 1- 1 Thermal transformation sequence of the aluminum hydroxides [7]. 8
Fig. 1- 2 A schematic drawing of porous alumina [19]. 8
Fig. 1- 3 The differentiated curve and the kinetics of Anodic alumina oxide growth [20]. 9
Fig. 2- 1 Flow chart of the experiment. 15
Fig. 2- 2 Schematic illustration of the anodizing layout and facility. 16
Fig. 3- 1 Thermogravimetric analysis of the Al–1.2 wt% Si and HPA alloys in dry air; heating rate = 8.3 K/min; air flow rate = 49.8 mL/min 28
Fig. 3- 2 X-ray diffractometer analyses (intensity versus 2h angle) for the thermally formed oxide on the Al–1.2 wt% Si alloy samples; the intensity peak that occurred at approximately (2θ) 78°confirms the existence of metallic aluminum in the surface oxide film after heating at 883 K for 25 h. 29
Fig. 3- 3 EPMA images showing the sectional view, including the oxide film and substrate, associated with the Al, O, and Si mapping of the Al–1.2 wt% Si alloy samples after heating at 843 K for 25 h. 30
Fig. 3- 4 ESCA analyses showing the measured atomic concentrations of Si, Al, and O as a function of sputtering time for Al–1.2 wt% Si alloy samples heated at 843 K for (a) 1 h and (b) 25 h. 31
Fig. 3- 5 Thermogravimetric analysis of Al-2 wt% Mg and Al-3.5 wt% Mg alloys in an air atmosphere; heating rate = 8.3K/min; air flow rate = 4.98 mL/min. 32
Fig. 3- 6X-ray diffractometer analyses (intensity versus two theta) for the thermally formed oxide on: (a) Al-2 wt% Mg and (b) Al-3.5 wt% Mg alloy samples heated at 773 K, after different time spans: “A” (0.67 h), “B” (0.83 h), “C” (2.7 h), “D” (6 h), and “E” (25 h). 34
Fig. 3- 7 ESCA analyses showing the measured atomic concentrations of Mg, Al, and O versus sputtering time for different samples heated at 773 K for different time spans; (a) Al-2 wt% Mg and (b) Al-3.5 wt% Mg heated for 1 h, respectively. 35
Fig. 3- 8 EPMA photos showing sectional views, including the oxide film and substrate, associated with Al, O, and Mg mapping on: (a) Al-2 wt% Mg alloy and (b) Al-3.5 wt% Mg alloy samples, after holding at 773 k for 25 h. 37
Fig. 3- 9 Thermogravimetric analysis of the Al–1.2 wt% Si and HPA alloys in nitrogen gas atmosphere;heating rate = 8.3 K/min; air flow rate = 49.8 mL/min 38
Fig. 3- 10 X-ray diffractometer analyses (intensity versus 2h angle) for the Al–1.2 wt% Si alloy samples heated in a nitrogen gas atmosphere; heated at 843 K for (a) sample ‘‘A’’ = 0.7 h, ‘‘B’’ = 2.5 h, ‘‘C’’ = 5 h, ‘‘D’’ = 7.2 h; (b) SEM image showing a sectional view of the thermal oxide film. 40
Fig. 3- 11 Thermogravimetric analyses of Al-2 wt% Mg and Al-3.5 wt% Mg alloys in a nitrogen gas atmosphere; heating rate = 8.3 K/min; air flow rate = 4.98 mL/min. 41
Fig. 3- 12 X-ray diffractometer analyses (intensity versus two theta) for the thermally formed oxide on: (a) Al-2 wt% Mg and (b) Al-3.5 wt% Mg alloy samples heated at 773 K, after different time spans: “A”(1.1 h), “B”(2.9 h), and “C”(6.2 h). 43
Fig. 4- 1 Measured V-t curve and differential ΔV/Δt curve for all samples at temperature 293K : 1H (high hydrogen: 55.5 cm3/100 g Al), 1L (low hydrogen: 1.1 cm3/100 g Al). 55
Fig. 4- 2 Measured V-t curve and differential ΔV/Δt curve for all samples at current density 15 mA/cm2: 1H (high hydrogen: 55.5 cm3/100 g Al), 1L (low hydrogen: 1.1 cm3/100 g Al). 56
Fig. 4- 3 Energy consumed in step 1 versus (V1-V0) voltage applied in step 1. 57
Fig. 4- 4 Energy consumed in step 1 versus barrier layer thickness. The formation energy was assumed to be 0.06 J/cm3 for drawing the reference line. 58
Fig. 4- 5 Pore population versus energy consumed in steps 2 + 3. The pore size is also indicated. 59
Fig. 4- 6 (a) Merged pore channel (sample 1Ha, anodizing time = 120 s), (b) branched pore channel (sample 2Ld, anodizing time = 120 s), and (c) straight pore channel (sample 2Hb, anodizing time = 120 s). 60
Fig. 4- 7 (a) Results of TOF-SIMS analyses of AAO film of sample 1Hd: including O2-, OH-, AlO+, H+, Al3+, and S2-, (b) different patterns of AAO film (sample 1Hd), and (c) top view of AAO film. The voids are indicated by arrows. 61
Fig. 4- 8 (a) Results of TOF-SIMS analyses of AAO film of sample 1Ld, including O2-, OH-, AlO+, H+, Al3+, and S2-, (b) different patterns of AAO film (sample 1Ld), and (c) top view of AAO film. 62
Fig. 4- 9 O 1s results of XPS spectra analyses of the AAO films on anodized samples; 0.5 um depth from surface (a) sample 1Hd, (b) sample 2Ld; near film/matrix interface (c) sample 1Hd, (d) sample 2Ld. 63
參考文獻 [1] P.F. Doherty and R.S. Davis, “Direct Observation of the Oxidation of Aluminum Single‐Crystal Surfaces”, Journal of Applied Physics, Vol 34, pp.619-628, 1963.
[2] A.F. Beck, M.A. Heine, E.J. Caule, and M. Yor, “The Kinetics of the Oxidation of Al in Oxygen at High Temperature”, Corrosion Science, Vol 7, pp.1-22, 1967.
[3] M.J. Dignam, W.R. Faucett, and H. Bohnei, “The Kinetics and Mechanism of Oxidation of Superpurity Aluminum in Dry Oxygen” Journal of the Electrochemical Society, Vol 113, pp.656-671, 1966.
[4] J.I. Eldridge, R.J. Hussey, D.F. Mitchell, and M.J. Graham, “Thermal Oxidation of Single-Crystal Aluminum at 550℃”, Oxidation of Metals, Vol 30, pp.301-328, 1988.
[5] T.S. Shih and Z.B. Liu, “Thermally-Formed Oxide on Aluminum and Magnesium”, Materials Transactions, Vol 475, pp.1347-1353, 2006.
[6] T.S. Shih and I.C. Chen, “Decomposition and Reaction of Thermal-Formed Alumina in Aluminum Alloy Castings”, Materials Transactions, Vol 468, pp.1868-1876, 2005.
[7] P.S. Santos, H.S. Santos, and S.P. Toledo, “Standard Transition Aluminas. Electron Microscopy Studies”, Materials Research”, Materials Research, Vol 3, pp.104-114, 2000.
[8] J.A.S. Tenorio and D.C.R. Espinosa, “High-Temperature Oxidation of Al–Mg Alloys” Oxid. Met. Vol 53, pp.316-373, 2000.
[9] G. Xie, O. Ohashi, M. Song, K. Mitsuishi and K. Furuya, “Reduction Mechanism of Surface Oxide Films and Characterization of Formations on Pulse Electric-Current Sintered Al–Mg Alloy Powders”, Appl. Surf. Sci. Vol 241, pp.102-106, 2005
[10] D.H. Kim, E.P. Yoon and J.S. Kim, “Oxidation of an Aluminum-0.4 wt% Magnesium Alloy”, J. Mater. Sci. Lett. Vol 15, pp.1429-1431, 1996.
[11] G.M. Scamans and E.P. Butler, “In Situ Observation of Crystalline Oxide Formation During Aluminum and Aluminum Alloy Oxidation”, Metall. Trans.A. 6 A, pp.2055-2063, 1975.
[12] L.W. Huang, P.W. Wang, T.S. Shih and J.H. Liou, “Effect of Degassing Treatment on the Quality of Al-7Si and A356 Melts”Mater. Trans. Vol 43, pp.2913-2920, 2002.
[13] Q. Hou, R. Mutharasan and M. Koczak,“Feasibility of Aluminium Nitride Formation in Aluminum Alloys”, Mater. Sci. and Engi. A, Vol 195, pp.121-129, 1995.
[14] Q. Zheng and R. G. Reddy, “Mechanism of in Situ Formation of AlN in Al Melt Using Nitrogen Gas”, Jr. of Mater. Sci., Vol 39, pp.141- 149, 2004.
[15] J.P. O’Sullivan and G.C. Wood,“The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium”, Proc. R. Soc. London, Ser.A. Vol 317, pp.511-543, 1970.
[16] V.G. Stoleru and E. Towe, “Optical Properties of Nanometer-Sized Gold Spheres and Rods Embedded in Anodic Alumina Matrices”, Appl. Phys. Lett., Vol 85, pp.5152-5154, 2004.
[17] S. Zhao, H. Roberge, A. Yelon, T. Veres,“New Application of AAO Template: A Mold for Nanoring and Nanocone Arrays”, J. Am. Chem. Soc. Vol 128, 12352-12353, 2006.
[18] J.P. Tu, C.X. Jiang, S.Y. Guo, M.F. Fu,“Micro-Friction Behavior of Amorphous Carbon Films on Porous AAO Membrane Synthesized by the Pyrolysis of Polyethleneglycol 400”, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., Vol 398, pp.241-245, 2005.
[19] D. Almawlawi, K.A. Bosnick, A. Osika, and M.Moskovits“Fabrication of nanometer-scale patterns by ion-milling with porous anodic alumina masks”, Advanced Materials, Vol 12, pp.1252-1257, 2000.
[20] P.S. Wei, T.S. Shih, “Monitoring the Progressive Development of an Anodized Film on Aluminum”, J. Electrochem. Soc., Vol 154, pp.C678-C683, 2007.
[21] G.E. Thompson and G.C. Wood, “Porous Anodic Film Formation on Aluminum”, Nature, Vol 290, pp.230-232, 1981.
[22] Y.S. Kim, S.I. Pyun, S.M. Moon and J.D. Kim,“The effects of Applied Potential and pH on The Electrochemical Dissolution of Barrier Layer in Porous Anodic Oxide Film on Pure Aluminium”, Corros. Sci., Vol 38, pp.329-336, 1996.
[23] G.C. Wood and J.P. O’Sullivan,“The Anodizing of Aluminium in Sulphate Solutions”, Electrochim. Acta, Vol 15, pp.1865-1876, 1970.
[24] G. Patermarakis, P. Lenas, Ch. Karavassilis and G. Papayiannis, “Kinetics of Growth of Porous Anodic Al2O3 Films on A1 Metal”, Electrochim. Acta, Vol 36, pp.709-725, 1991.
[25] D.H. Bradhurst and J.S. Llewelyn Leach, “The Mechanical Properties of Thin Anodic Films on Aluminum”, J. Electrochem. Soc., Vol 113, pp.1245-1249, 1966.
[26] S.E. Benjamin and Fazal A. Khalid, “Stress Generated on Aluminum During Anodization as a Function of Current Density and pH”, Oxid. Met., Vol 52, pp.209-223, 1999.
[27] N. Sato,“A Theory for Breakdown of Anodic Oxide Films on Metals”, Electrochim. Acta, Vol 16, 1683-1692, 1971.
[28] J.C. Nelson and R.A. Oriani,“Stress Generation During Anodic Oxidation of Titanium and Aluminum”, Corros. Sci., Vol 34, 307-326, 1993.
[29] S.M. Moon and S.I. Pyun, “The Mechanism of Stress Generation During the Growth of Anodic Oxide Films on Pure Aluminium in Acidic Solutions”, Electrochim. Acta, Vol 43, pp.3117-3126, 1998.
[30] L. Iglesias-Rubianes, P. Skeldon, G.E. Thompson, U. Kreissig, D. Grambole, H. Habazaki and K. Shimizu,“Behaviour of Hydrogen Impurity in Aluminium Alloys During Anodizing”, Thin Solid Films, Vol 424, pp.201-207, 2003.
[31] M.F. Abd Rabbo, J.A. Richardson and G.C. Wood,“Detection of Hydrogen Profiles Through Anodic Films on Aluminium by Secondary Ion Mass Spectrometry”, Electrochim. Acta, Vol 22, pp.1375-1379, 1977.
[32] E. Zhuravlyova, L. Iglesias-Rubianes, A. Pakes, P. Skeldon, G.E. Thompson, X. Zhou, T. Quance, M.J. Graham, H. Habazaki and K. Shimizu, “Oxygen Evolution within Barrier Oxide Films”, Corros. Sci., Vol 44, pp.2153-2153, 2002.
[33] X.F. Zhu, D.D. Li, Y. Song and Y.H. Xiao, “The Study on Oxygen Bubbles of Anodic Alumina Based on High Purity Aluminum”, Mater. Lett., Vol 59, pp.3160-3163, 2005.
[34] X. Zhu, L. Liu, Y. Song, H. Jia, H. Yu, X. Xiao and X. Yang, “Oxygen Bubble Mould Effect: Serrated Nanopore Formation and Porous Alumina Growth”, Monatsh. Chem., Vol 139, pp.999-1003, 2008.
[35] D.D. Macdonald, “On the Formation of Voids in Anodic Oxide Films on Aluminum”J. Electrochem. Soc., Vol 140, pp.L27-L30, 1993.
[36] S. Ono, H. Ichinose and N. Masuko, “Defects in Porous Anodic Films Formed on High Purity Aluminum”, J. Electrochem. Soc., Vol 138, pp.3705-3710, 1991.
[37] S. Zhao, K. Chan, A.Yelon and T. Veres,“Novel Structure of AAO Film Fabricated by Constant Current Anodization”, Adv. Mater., Vol 19, pp.3004-3007, 2007.
[38] Y.C. Sui, B.Z. Cui, L. Mart’ınez, R. Perez and D.J. Sellmyer,“Pore Structure, Barrier Layer Topography and Matrix Alumina Structure of Porous Anodic Alumina Film”, Thin Solid Films, Vol 406, pp.64-69, 2002.
[39] G. Meng, Y.J. Jung, A. Cao, R. Vajtai and P.M. Ajayan,“Controlled Fabrication of Hierarchically Branched Nanopores, Nanotubes, and Nanowires”, Proc. Nat. Acad. Sci., Vol 102, pp.7074-7078, 2005.
[40] P.S. Santos, H.S. Santos, and S.P. Toledo, “Standard Transition Aluminas. Electron Microscopy Studies”, Materials Research”, Materials Research, Vol 3, pp.104-114, 2000.
[41] L. Yang, D. Zhu, C. Xu, and J. Zhang, “On the Role of Magnesium and Silicon in the Formation of Alumina from Aluminum Alloys by Means of DIMOX Processing”, Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science A, Vol 27, pp.2094-2099, 1996.
[42] V. Kevorkijan, T. Kosmac and K. Kristoffer, “Spontaneous Reactive Infiltration of Porous Ceramic Preforms with Al-Mg and Mg in the Presence of Both Magnesium and Nitrogen—New Experimental eEvidence”, Mater. Manuf. Process. Vol 17, pp.307-322, 2002.
[43] T. S. Shih, C. B. Chung and K. Z. Chong, “Combustion of AZ61A Under Different Gases”, Mater. Chem. Phys., Vol 74, pp.66-73, 2002.
[44] R. Sharma, M. J. McKelvy, H. Bearat, A. V. G. Chizmeshya and R. W. Carpenter, “In-Situ Nanoscale Observations of the Mg(OH)2 Dehydroxylation and Rehydroxylation Mechanisms”, Philos. Mag., A. Phys. Condens. Matter. Defects Mech. Prop., Vol 84, pp.2711-2729, 2004.
[45] K. Wefers, “The Mechanism of Sealing of Anodic Oxide Coatings on Aluminium”, Aluminum, Vol 49, pp.553-561, 1973.
[46] H. Uchi, T. Kanno and R.S. Alwittb, “Structural Features of Crystalline Anodic Alumina Films”, J. Electrochem. Soc., Vol 148 (1), pp.B17-, 2001.
[47] C. Novak, G. Pokol, V. Izvekov, and T. Gal, “Studies on the Reactions of Aluminum Oxides and Hydroxides”, Journal of Thermal Analysis, Vol 36, pp.1895-1909, 1990.
[48] R. Ozao, M. Ochiai, N. Ichimura, H. Takahashi and T. Inada, “DSC Study of Alumina Materials — Applicability of Transient DSC (Tr-DSC) to Anodic Alumina (AA) and Thermoanalytical Study of AA ” , Thermochim. Acta Vol 352-353, pp.91-97 (2000).
[49] K.S. Raja, M. Misra and K. Paramguru, “Formation of Self-Ordered Nano-Tubular Structure of Anodic Oxide Layer on Titanium” Electrochim. Acta., Vol 51, pp.154-165, 2005.
[50] S. Feliu, Jr., Ma.J. Bartolomé, J.A. González and S. Feliu,“XPS Characterization of Porous and Sealed Anodic Films on Aluminum Alloys” , J. Electrochem. Soc., Vol 154, pp.C241-248, 2007.
[51] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder and G.E. Muilenberg, Hand- book of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin- Elmer Corporation, Eden Prairie, MN, 1979.
[52] B.R. Strohmeier, J.A. Rotole and P.M.A. Sherwood, “Gamma-Alumina (γ-Al2O3) by XPS”, Surface Science Spectra, Vol 5, pp.18-24, 1998.
[53] T.L. Barr, “An ESCA Study of the Termination of the Passivation of Elemental Metals”, The Journal of Physical Chemistry,Vol 82, pp.1801-1810, 1978.
[54] T.S. Shih, P.C. Chen and C.C. Huang, “Thermally Formed Oxide Films on Al-XSi Alloys Heated in Different Gases”, Oxid Met, Vol 70, pp.69-83, 2008
[55] On line resources︰http://webmineral.com
指導教授 施登士(Shih-shin Teng) 審核日期 2010-7-20 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare