博碩士論文 93344004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.227.0.21
姓名 林明申(Ming-Shen Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 類澱粉胜肽與細胞膜交互作用機轉之動力學及熱力學研究
(The mechanism of beta-amyloid and cell membrane interactionby kinetics and thermodynamics analyses)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 阿茲海默症是最常見的一種漸進式腦神經退化疾病,在病理學上的特徵是神經細胞外的類澱粉胜肽堆積,被認為是造成阿茲海默症的主因。然而AD的致病機轉至今仍有許多爭議,並無有效地治癒藥物與策略。為了明白類澱粉胜肽導致神經細胞死亡的機制,因此提出『Recruiting Hypothesis』,用來描述類澱粉胜肽與細胞膜之間交互作用機轉。
本研究為了驗證『Recruiting Hypothesis』,利用實驗設計分別以動力學及熱力學分析Aβ在溶液中聚集機轉及Aβ與人工合成脂膜交互作用,最終再以動物細胞模式驗證Aβ與類神經細胞(PC12)之交互作用。
(1) Aβ在溶液中聚集機轉:
Aβ在溶液中是以random coil結構存在,在聚集的過程中Aβ的結構會由random coil轉變為β-sheet,且Aβ是以疏水作用力來穩定β-sheet之二級結構。另,Aβ聚集的動力學分析發現成核反應為Aβ聚集的速率決定步驟;而成核反應主要是以疏水作用力主導。在離子強度效應會導致Aβ具有相異的反應機制,形成不同型態的Aβ聚集體。
(2) Aβ與人工合成脂膜交互作用:
Aβ與細胞膜作用會加速Aβ聚集形成纖維狀。Aβ在生理環境中會以靜電作用被吸引到細胞膜表面,隨後誘發GM1與膽固醇聚集形成raft-like。當中的Aβ會調整其構型為β-sheet,並吸引溶液中其他的Aβ聚集。最後raft-like間彼此聚集,形成富含Aβ、GM1及膽固醇的相,因此造成細胞膜不穩定,導致細胞功能降解甚至死亡。
(3) Aβ與類神經細胞(PC12)之交互作用:
Aβ的細胞毒性隨著Aβ的濃度與C端序列長度增加;fresh Aβ在與PC12細胞作用時,較纖維狀的Aβ有較高的細胞毒性。降低細胞膜中膽固醇及GM1含量能夠有效地降低Aβ細胞毒性。由Aβ與PC12交互作用的熱量分析,也得到與細胞活性分析相符合的結果。
研究結果與文獻報導都支持所提出的『Recruiting Hypothesis』。因此,可藉由『Recruiting Hypothesis』中對Aβ與細胞膜間交互作用行為的描述,設計出治療AD的策略或藥物。另,研究中利用ITC即時地偵測Aβ與細胞交互作用時,PC12細胞的代謝熱量變化。此生物熱力學量測的方法具有快速且直接量測等優點,可用來觀測藥物/生物分子與活體細胞交互作用的熱量變化,甚至可得到細胞生理學的有益資訊,是極具發展潛力的偵測方法。
摘要(英) AD is the most common neurodegenerative disease. The pathological hallmark of extra-cellular β-amyloid (Aβ) deposit is considered as one of the primary factors in inducing Alzheimer’s disease (AD). However, the mechanism of Aβ deposition on the cell membrane and the induced cytotoxicity is still unclear. The major obstacle in designing an effective therapeutic or strategy lies in our incomplete understanding of the mechanism of AD. On the basis of the previous reports and results, the “Recruiting Hypothesis” was proposed on the interaction between the plasma membrane and Aβ.
For “Recruiting Hypothesis” verification , this study is analyzed by kinetic and thermodynamic methods which divided into three parts which shown as follows.
(1) Investigation of the mechanism of beta-amyloid fibril formation
In the aggregation process, the secondary structure of Aβ (1-40) transforms to the β-sheet conformation, which could be described as a two-state model. As the temperature and ionic strength increase, the conformation of Aβ converts to the β-sheet structure with an increased rate. Results of circular dichroism monitoring demonstrate that the rate constant of nucleation is smaller than that of elongation, and the nucleation is the rate-determining step during the overall Aβ aggregation. The β-sheet structure was stabilized by hydrophobic force as revealed by the ITC measurements. The different structural aggregates and forming pathways could be identified and discriminated at high and low ionic strengths, resulting in distinctive fibril conformations. Furthermore, the thermodynamic analysis shows that hydrophobic interaction is the major driving force in the nucleation step.
(2)Studying the interaction between beta-amyloid and artificial cell membranes
Results from SPR and lipid monolayer trough studies showed that the rate of Aβ adsorption onto lipid monolayer/liposome is mainly due to the electrostatic effect which is sensitive to the lipid monolayer/liposome composition. Due to the electrostatic attraction of more number of GM1 by the Aβ leads to the formation of GM1 clusters. The GM1 clusters incurred cholesterol recruitment and form raft-like structure Consequently, the Aβ conformation changed to β-sheet, which acts as a seed and initiates a chain reaction, in that it attract other Aβs to interact with the GM1. This resulted in the accumulation of Aβ on the plasma membrane. At the same time, both GM1 and cholesterol accumulate more and form larger clusters. Finally, each clusters aggregate with each other and form Aβ, GM1 and cholesterol rich phase which resulted in the function of membrane degradation.
(3)Examining the interaction between beta-amyloid and PC12 cell
Monomeric Aβ could attack the plasma membrane resulting in cytotoxicity, however, fibrillar Aβ was found to be less toxic. Aβ (1-40) was more toxic than Aβ (25-35) and the cytotoxcity of Aβ was proportional to its concentration. Besides, the depletion of GM1 from plasma membrane, it would block the Aβ-induced cytotoxicity. Decreasing the cholesterol level by around 30 % could attenuate the cytotoxicity of Aβ. These findings validate our idea that the cholesterol could stabilize the lateral pressure derived from the formation of GM1-Aβ complex on the membrane surface. Furthermore, both GM1 and cholesterol are essential in mechanism of Aβ accumulation and could modulate the cytotoxicity of monomeric Aβ.
All these results list above and published references are support “Recruiting Hypothesis”. Understanding the insight of the interaction between Aβ and cell membrane which provide by “Recruiting Hypothesis” could be helpful in developing medicines and strategies aimed to cure AD.
In addition, a biothermodynamic approach to real-time monitor the heat of metabolism by isothermal titration calorimetry (ITC) during PC12 cell-Aβ (1-40) interaction was provided by this study. This approach with rapid and directly measurement may provide not only real-time information for the interaction between Aβ and live cell but also more options for candidate drug development.
關鍵字(中) ★ 代謝熱量。
★ 膽固醇
★ Recruiting Hypothesis
★ 阿茲海默症
★ 類澱粉胜肽
關鍵字(英) ★ Alzheimer’s disease
★ beta-amyloid
★ Recruiting Hypothesis
★ cholesterol
★ heat of metabolism.
論文目次 目 錄
中文摘要 IV
ABSTRACT VI
致謝 IX
目錄 X
圖目錄 XIII
表目錄 XVIII
一、序論 1
1.1研究動機 1
1.2 Recruiting Hypothesis 3
1.3研究目的 5
二、文獻回顧 6
2.1阿茲海默症 6
2.1.1阿茲海默症病理特徵 6
2.1.2阿茲海默症臨床分類 9
2.2類澱粉前驅蛋白形成類澱粉蛋白的過程 9
2.3類澱粉胜肽的結構與細胞毒性 11
2.4類澱粉胜肽聚集的機轉 13
2.5類澱粉胜肽聚集動力學 17
2.6影響類澱粉胜肽聚集之因素 19
2.6.1類澱粉胜肽序列 19
2.6.2類澱粉胜肽濃度 20
2.6.3培養溫度 24
2.6.4緩衝溶液酸鹼值 26
2.6.5離子強度 28
2.6.6類澱粉胜肽的初始溶劑效應 30
2.6.7其他因素 33
2.7類澱粉胜肽與細胞膜交互作用 34
2.7.1生物細胞膜組成對Aβ聚集的影響 34
2.7.2類澱粉胜肽與細胞膜交互作用之動力學研究 41
2.7.3類澱粉胜肽與細胞膜交互作用之熱力學研究 43
2.7.4類澱粉胜肽與脂質單分子層交互作用 45
2.8阿茲海默症治療現況 51
三、材料與方法 53
3.1實驗藥品 53
3.2實驗儀器 55
3.3研究架構 56
3.4類澱粉胜肽在溶液中聚集機制 57
3.4.1類澱粉胜肽製備 57
3.4.2圓二色光譜儀量測類澱粉胜肽二級結構 57
3.4.3Thioflavin T 螢光偵測類澱粉胜肽β-sheet結構 57
3.4.4原子力顯微鏡量測類澱粉胜肽表面形貌 57
3.4.5恆溫滴定微卡計量測Aβ聚集反應焓 58
3.5類澱粉胜肽與人工合成脂膜交互作用 59
3.5.1類澱粉胜肽與脂質單分子層交互作用 59
3.5.2類澱粉胜肽與微脂粒交互作用 60
3.6類澱粉胜肽與類神經細胞交互作用 62
3.6類澱粉胜肽製備 62
3.6.2細胞培養與類澱粉胜肽作用 62
3.6.3降低細胞膜中GM1的含量 62
3.6.4調整細胞膜中膽固醇的含量 63
3.6.5細胞活性測試 63
3.6.6ITC量測Aβ與PC12細胞交互作用焓 64
3.6.7流式細胞儀分析細胞週期及細胞凋亡 65
四、結果與討論 67
4.1類澱粉胜肽在溶液中聚集機轉 67
4.1.1溫度效應 67
4.1.2酸鹼值效應 73
4.1.3離子強度效應 77
4.1.4 Aβ(1-40)分子間交互作用之熱力學分析 82
4.1.5 Aβ聚集機制分析 85
4.2類澱粉胜肽與人工合成脂膜交互作用 87
4.2.1類澱粉胜肽與脂質單層膜交互作用 87
4.2.2類澱粉胜肽與微脂粒交互作用 101
4.2.3 類澱粉胜肽與細胞膜交互作用分析 125
4.3 Aβ與PC12細胞之交互作用 127
4.3.1 Aβ的序列、構形及濃度對細胞毒性的影響 127
4.3.2 GM1對Aβ細胞毒性之影響 128
4.3.3膽固醇調控Aβ細胞毒性 128
4.3.4 ITC量測類澱粉胜肽與PC12細胞交互作用熱 136
五、結論與展望 150
參考文獻 153
附錄 182
圖目錄
圖1.1近二十年來,AD及amyloid相關的研究發表調查 2
圖1.2 Recruiting Hyphothesis示意圖 4
圖2.1阿茲海默症主要的病理特徵:神經細胞外的老化斑塊與神經細胞上的神經纖維糾結 8
圖2.2類澱粉前驅蛋白經酵素水解形成類澱粉蛋白的過程示意圖 11
圖2.3單體Aβ聚集形成纖維結構的示意圖 15
圖2.4 Aβ聚集形成fibril過程中產生反應中間體的示意圖 16
圖2.5 Aβ聚集形成fibril反應動力學 16
圖2.6 不同序列之Ab於不同培養時間的AFM形貌圖 21
圖2.7利用CD所測得Aβ(25-35)於pH 4.0環境下不同濃度時圖譜變化 22
圖2.8 不同濃度之Aβ(1-42)隨時間變化之AFM形貌圖 23
圖2.9 Aβ(1-42)於不同溫度培養24 hr之AFM形貌圖 25
圖2.10 Aβ於不同pH環境下的TEM形貌圖 27
圖2.11 Aβ(1-42)於不同pH環境下培養24小時的AFM形貌圖 27
圖2.12 Aβ(1-40)於(A)0 mM NaCl(B)150 mM NaCl環境下培養19小時的TEM形貌圖 29
圖2.13 Aβ(1-42)於(A)0 mM NaCl與(B)150 mM NaCl環境下培養24小時的AFM形貌圖 29
圖2.14 Aβ(1-40) protofibrils於150 mM NaCl環境下培養19小時的(A)AFM與(B)TEM形貌圖 30
圖2.15 Aβ(1-42)於不同初始溶劑下培養的形貌圖 32
圖2.16 glycospingolipids的結構 38
圖2.17以GM1為介質,促進Aβ形成纖維狀(fibril)的示意圖 39
圖2.18螢光標定PC12細胞上的GM1與Aβ;同一濃度的Aβ與PC12細胞作用,隨時間增加Aβ的量增多,且Aβ鍵結在PC12上的位置與GM1重合,但若把膽固醇移除可以發現Aβ沒有生成,且GM1很均勻分佈於細胞中,表示細胞中GM1與膽固醇的存在對於Aβ鍵結在細胞上為重要的因素 40
圖2.19 ITC可以配合CD的數據來探討胜肽在生物細胞膜上的作用機制 44
圖2.20 初始壓力固定時,蛋白質溶液注入後其表面壓隨時間的變化圖 47
圖2.21光探針的化學結構與位於POPC脂單層膜的位置,由下分別是laurdan、TMA-DPH、DPH 49
圖3.1 ITC量測Aβ與PC12細胞交互作用焓之示意圖 66
圖4.1 (A) Aβ培養於45 ?C時,隨時間偵測二級結構的變化之CD譜圖。(B) Aβ在30 , 37, 45 ?C培養24小時後的CD譜圖。(C) 隨時間偵測在30 ?C (?), 37 ?C (?), 45 ?C (?)培養溫度下,波長218 nm的橢圓率變化 70
圖4.2 ThT螢光偵測Aβ於30 ?C (?), 37 ?C (?), 45 ?C (?)培養時,隨時間生成纖維結構 71
圖4.3 AFM偵測35 μM的Aβ(1-40)在pH 7.4含有100 mM NaF的PBS中,培養24小時的形貌圖 72
圖4.4 pH值對Aβ培養在37 ℃生成fibril動力學的影響 75
圖4.5 ThT螢光隨時間偵測Aβ於pH 5.0 (?), 6.0 (?), 7.4 (?),纖維結構的生成 76
圖4.6隨時間偵測在含有0 mM (?), 100 mM (?), 200 mM (?) NaF的緩衝溶液中,波長218 nm的橢圓率變化 79
圖4.7 ThT螢光隨時間偵測Aβ在含有0 mM (?), 100 mM (?), 200 mM (?) NaF的緩衝溶液中,纖維結構的生成 80
圖4.8 AFM偵測35 μM的Aβ(1-40)培養在37 ℃、pH 7.4的PBS中,培養24小時的形貌圖 81
圖4.9 培養溫度對單體Aβ與aggregated Aβ稀釋熱的影響 83
圖4.10 鹽濃度對單體Aβ稀釋熱的影響 84
圖4.11 Aβ吸附至DPPC/Chol.脂質單層膜的表面壓-時間等溫吸附曲線(Π-t isotherm) 90
圖4.12 Aβ與DPPC脂質單層膜交互作用的特徵時間示意圖 91
圖4.13 Aβ吸附於不同組成分的脂質單分子層之時間-表面壓等溫吸附曲線,25℃ 92
圖4.14 Aβ(1-40)吸附於DPPC/DPPG/Chol. (5/2/3)脂質單層膜之等溫線吸附線與膽固醇隨時間聚集的圖形 96
圖4.15 Aβ(1-40)吸附於DPPC/Chol.(7/3)脂質單層膜之等溫線吸附線與膽固醇隨時間聚集的圖形 97
圖4.16 當Aβ與DPPC/DPPG/Chol. (5/2/3)脂質單層膜反應時,膽固醇分子在負電脂質單層膜中的運動軌跡 98
圖4.17 當Aβ與DPPC/Chol. (7/3)脂質單層膜反應時,膽固醇分子在中性脂質單層膜中的運動軌跡 99
圖4.18 膽固醇在脂質單層膜中聚集面積之統計分析 100
圖4.19 20 μM的單體Aβ(1-40)與微脂粒交互作用之表面電漿共振感應圖 106
圖4.20 固定在SPR晶片的負電微脂粒與單體Aβ反應後,微脂粒遭到破壞之AFM表面形貌圖 107
圖4.21 固定在SPR晶片的中性微脂粒與單體Aβ反應後,微脂粒仍保持完整的形態 108
圖4.22 20 μM的聚集體Aβ(1-40)與微脂粒交互作用之表面電漿共振感應圖 109
圖4.23 20 μM的單體Aβ(1-40)與DPPC共同培養於25?C, pH7.4的10mM PBS 中,隨時間偵測二級結構變化之CD譜圖 114
圖4.24 20 μM的單體Aβ(1-40)與中性微脂粒共同培養,固定波長在218 nm隨時間偵測β-sheet結構變化 115
圖4.25 20 μM的單體Aβ(1-40)與DPPC/DPPG(5/3)微脂粒共同培養,Aβ的二級結構隨時間變化 116
圖4.26 20 μM的單體Aβ(1-40)與DPPC/DPPG/Chol.(5/2/3)微脂粒共同培養,Aβ的二級結構隨時間變化 117
圖4.27 20 μM的單體Aβ(1-40)與DPPC/GM1/Chol.(5/2/3)微脂粒共同培養,Aβ的二級結構隨時間變化 118
圖4.28 隨時間分別偵測單體Aβ(1-40)與(DPPC/DPPG/Chol.(5/2/3)及DPPC/GM1/Chol.(5/2/3)微脂粒培養在25 ?C,在波長218 nm的橢圓率變化 119
圖4.29 Aβ與微脂粒交互作用過程示意圖 121
圖4.30 單體Aβ(1-40)與不同組成份的微脂粒交互作用的反應熱 124
圖4.31 fresh Aβ濃度及胺基酸片段長度對細胞活性的影響 131
圖4.32 Aβ構形對細胞活性的影響 132
圖4.33 在細胞膜中GM1含量對Aβ(1–40)細胞毒性的影響 133
圖4.34 降低細胞膜中膽固醇含量對細胞活性的影響 134
圖4.35 在細胞膜中膽固醇含量對Aβ(1–40)細胞毒性的影響 135
圖4.36 Aβ(1-40)的構形對PC12細胞生長代謝熱量的影響 141
圖4.37 Aβ(1-40)的構形對PC12細胞活性的影響 142
圖4.38 隨時間偵測Aβ(1-40)對PC12細胞週期的影響 143
圖4.39 隨時間偵測Aβ(1-40)對PC12的細胞毒性 144
圖4.40 寡聚體的Aβ(1-40)濃度對PC12細胞生長代謝熱量的影響 145
圖4.41降低GM1含量的PC12細胞與寡聚體Aβ反應,隨時間偵測反應熱量 146
圖4.42 降低GM1濃度的PC12細胞與濃度為11 μM的寡聚體Aβ(1-40)反應12、24、48小時的細胞活性 147
圖4.43 調整PC12細胞的膽固醇含量與寡聚體Aβ反應,隨時間偵測反應熱量 148
圖4.44 調整膽固醇含量的PC12細胞與濃度為11 μM的寡聚體Aβ(1-40)反應12、24、48小時的細胞活性 149
表目錄
表2. 1 動物組織中細胞膜表面的脂質組成 37
表2. 2 Aβ對生物細胞膜流動性的影響 50
表4. 1 Aβ(1-40)在不同培養溫度之聚集動力學參數 73
表4. 2 Aβ與不同組成分的脂質單分子層交互作用之特徵時間τ1及τ2 93
表4. 3 Aβ與不同組成分的微脂粒交互作用 105
表4. 4 利用Langmuir binding model分析單體及聚集體的Aβ(1-40)與不同組成的微脂粒作用之親和力參數(KA) 105
表4. 5 單體Aβ(1-40)與微脂粒反應24小時,Aβ(1-40)二級結構的變化 113
參考文獻 參考文獻
[1] K. Garber, “An end to Alzheimer’s” Technol. Rev., 104, pp 70-77, 2001.
[2] B. S. Shastry, “Molecular Genetics of familial Alzheimer disease” Am. J. Med. Sci., 315, pp 266-272, 1998.
[3] S. Y. Park and D. S. Kim, “Discovery of natural products from Curcuma longa that protect cells from beta-amyloid insult: a drug discovery effort against Alzheimer’s disease” J. Nat. Prod., 65, pp 1227-1231, 2002.
[4] A. Benson, “Alzheimer’s disease: a tangled issue” Business Trends, 10, pp 749-751, 2005.
[5] S. Kar, Stephen, P. M. Slowikowski, D. Westaway, Howard, T. J. Mount, “Interaction between β-amyloid and central cholinergic neurons: implications for Alzheimer’s disease” J. Psychiatry Neurosci., 291, pp 427-441, 2004.
[6] J. D. Green, L. Kreplak, C. Goldsbury, Stolz M. Li, G. S. Cooper, A. Seelig, J. Kistler, U. Aebi, “Atomic force microscopy reveals defects within mica supported lipid bilayers induced by the amyloidogenic human amylin peptide” J. Mol. Biol., 342, pp 877-887, 2004.
[7] D. J. Selkoe, “Alzheimer's disease: a central role for amyloid” J. Neuropathol. Exp. Neurol., 53, pp 438-447, 1994.
[8] J. A. Hardy and G. A. Higgins, “Alzheimer's disease: the amyloid cascade hypothesis.” Science, 256, pp 184-185, 1992.
[9] J. Hardy and D. J. Selkoe, “The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.” Science, 297, pp 353-356, 2002.
[10] D. J. Selkoe, “Translating cell biology into therapeutic advance in Alzheimer’s disease” Nature, 399, pp A23–A31, 1999.
[11] J. Hardy, “Amyloid the presenilis and Alzheimer’s disease” Trends Neurosci., 20, pp 154–159, 1997.
[12] D. J. Selkoe, “Alzheimer’s disease: genes, proteins, and therapy” Physiol Rev., 81, pp 741-766, 2001.
[13] Edward H. Koo, Peter T. Lansbury, Jr., Jeffery W. Kelly, “Amyloid diseases: Abnormal protein aggregation in neurodegeneration” Proc. Natl. Acad. Sci., 96, pp 9989-9990, 1999.
[14] M. P. Lambert, A. K. Barlow, B. A. Chromy, C. Edwards, R. Freed, M. Liosatos, T. E. Morgan, I. Rozovsky, B. Trommer, K. L. Viola, P. Wals, C. Zhang, C. E. Finch, G. A. Krafft, W. L. Klein, “Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins” Proc. Natl. Acad. Sci., 95, pp 6448-6453, 1998.
[15] L. K. Simmons, P. C. May, K. J. Tomaselli, R. E. Rydel, K. S. Fuson, E. F. Brigham, S. Wright, I. Lieberburg, G. W. Becker, and D. N. Brems, “Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro” Mol. Pharmacol., 45, pp 373-379, 1994.
[16] L. C. Serpell, “Alzheimer's amyloid fibrils: structure and assembly” Biochim. Biophys. Acta., 1502, pp 16-30, 2000.
[17] S. S.-S. Wang, D. Rymer, T. A. Good, “Cholesterol and sialic acid removal protects cells from the toxic effects of β-amyloid peptides” J. Biol. Chem., 276, pp 42027-42034, 2001.
[18] A. Kakio, S.-I. Nishimoto, K. Yanagisawa, Y. Kozutsumi, K. Matsuzaki, “Interactions of amyloid β-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid” Biochemistry, 41, pp 7385–7390, 2002.
[19] M. Wakabayashi, T. Okada, Y. Kozutsumi, K. Matsuzaki, “GM1 ganglioside-mediated accumulation of amyloid beta-protein on cell membranes” Biochem. Biophys. Res. Commun., 328, pp 1019–1023, 2005.
[20] A. Kakio, S.-I. Nishimoto, K. Yanagisawa, Y. Kozutsumi, K. Matsuzaki, “Cholesterol-dependent formation of GM1 ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid” J. Biol. Chem., 276, pp 24985–24990, 2001.
[21] Z.-X. Sun, Q.-H. Zhou, S.-F. Sui, “Cholesterol depletion inhibits the degradation of amyloid beta-peptide in rat pheochromocytoma (PC12) cells” Neurosci., 391, pp 71–75, 2005.
[22] D. Foguel and J. L. Silva, “New insights into the mechanisms of protein misfolding and aggregation in amyloidogenic diseases derived from pressure studies” Biochemistry, 43, pp 11362-11370, 2004.
[23] Watanabe K., T. Segawa,K. Nakamura,M. Kodaka,T. Konakahara,H. Okuno, “Identifcation of the molecular interaction site of amyloid β peptide by using a fuorescence assay” J. Peptide Res., 58, pp 342–346, 2001.
[24] P. Ferri, M. Prince, C. Brayne, “Global prevalence of dementia: a Delphi consensus study” Lancet, 366, pp 2112–2117, 2005.
[25] J. R. Hodges, “Alzheimer's centennial legacy: origins, landmarks and the current status of knowledge concerning cognitive aspects” Brain, 129, pp 2811-2822, 2006.
[26] J. L. Cummings, “Alzheimer's disease” N. Engl. J. Med., 351, pp 56-67, 2004.
[27] L. Price, R. E. Tanzi, D. R. Borchelt, S. S. Sisodia, “Alzheimer’s disease: genetic studies and transgenic models” Annu. Rev. Genet., 32, pp 461-493, 1998.
[28] 蔡元彰,「功能性基因體學與阿茲海默氏症之新藥開發」,化工資訊,第六卷,36-40頁,92年。
[29] J. McLaurin and A. Chakrabartty, “Membrane disruption by Alzheimer β-amyloid peptides mediated through specific binding to either phospholipids or gangliosides” J. Biol. Chem., 271, pp 26482-26489, 1996.
[30] M. Morishima-Kawashima, M. Hasegawa, K. Takio, M. Suzuki, K. Titani, Y. Ihara, “Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments” Neuron, 10, pp 1151–1160, 1993.
[31] G. Lee, S. T. Newman, D. L. Gard, H. Band, G. Panchamoorthy, “Tau interacts with src-family non-receptor tyrosine kinases” J. Cell Sci., 111, pp 3167-3177, 1998.
[32] I. Grundke-Iqbal, K. Iqbal, M. Quinlan, Y. C. Tung, M. S. Zaidi, H. M. Wisniewski, “Microtubule-associated protein tau. A component of Alzheimer paired helical filaments” J. Biol. Chem., 261, pp 6084–6089, 1986.
[33] I. Grundke-Iqbal, K. Iqbal, Y. C. Tung, M. Quinlan, H. M. Wisniewski, L. I. Binder, “Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology” Proc. Natl. Acad. Sci., 83, pp 4913–4917, 1986.
[34] J. L. Price and J. C. Morris, “Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease” Annal. Neurol., 45, pp 358-368, 1999.
[35] J. Selkoe, “The genetic and molecular pathology of Alzheimer’s disease: roles of amyloid and the presenilins” Neurol. Clin., 18, pp 903-922, 2000.
[36] Goate, M. C. Chartier-Harlin, M. Mullan, “Segregation of a missense mutation in the β protein precursor protein gene with familial Alzheimer’s disease” Nature, 349, pp 704-706, 1991.
[37] R. Crook, R. Ellis, M. Shanks, L. J. Thal, T. J. Perez, M. Baker, M. Hutton, T. Haltia, J. Hardy, D. Galasko, “Early-onset Alzheimer's disease with a presenilin-1 mutation at the site corresponding to the Volga German presenilin-2 mutation” Ann. Neurol., 42, pp 124-128, 1997.
[38] J. Selkoe, “Physiological production of the beta-amyloid protein and the mechanism of Alzheimer’s disease” Trends Neurosci., 16, pp 403-409, 1993.
[39] X. Yanming and K. Higuchi, “Amyloid fibril proteins” Mech. Ageing. Dev., 123, pp 1625-1636, 2002.
[40] C. L. Joachim, H. Mori, D. J. Selkoe, “Amyloid beta-protein deposition in tissues other than brain in Alzheimer's disease” Nature, 341, pp 226-230, 1989.
[41] Q. X. Li, S. Whyte, J. E. Tanner, G. Evin, K. Beyreuther, C. L. Masters, “Secretion of Alzheimer's disease Abeta amyloid peptide by activated human platelets” Lab Invest., 78, pp 461-469, 1998.
[42] C. Nordstedt, J. Naslund, L. O. Tjernberg, A. R. Karlstrom, J. Thyberg, L. Terenius, “The Alzheimer A beta peptide develops protease resistance in association with its polymerization into fibrils” J Biol Chem., 269, pp 30773-30776, 1994.
[43] W. Annaert and B. De Strooper, “A cell biological perspective on Alzheimer’s disease” Ann. Rev. Cell. Dev. Biol., 18, pp 25–51, 2002.
[44] G. Glenner and C. W. Wong, “Alzheimer’s disease: initial report of the purification, and characterization of a novel cerebrovascular amyloid protein” Biochem. Biophys. Res. Commun., 120, pp 885–890, 1984.
[45] D. J. Selkoe, “Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide” Cell, 75, pp 1039-1042, 1993.
[46] T. Jarrett, E. P. Berger, P. T. Jr. Lansbury, “The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease” Biochemistry, 32, pp 4693-4697, 1993.
[47] D. Buxbaum, K. N. Liu, Y. Luo, J. L. Slack, K. L. Stocking, J. J. Peschon, R. S. Johnson, B. J. Castner, D. P. Cerretti, R. A. Black, “Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor” J. Biol. Chem., 273, pp 27765-27767, 1998.
[48] S. Lammich, E. Kojro, R. Postina, S. Gilbert, R. Pfeiffer, M. Jasionowski, C. Haass, F. Fahrenholz, “Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease” Proc. Natl. Acad. Sci., 96, pp 3922-3927, 1999.
[49] R. Vassar, B. D. Bennett, S. Babu-Khan, S. Kahn, E. A. Mendiaz, P. Denis, D. B. Teplow, S. Ross, P. Amarante, R. Loeloff, Y. Luo, S. Fisher, J. Fuller, S. Edenson, J. Lile, M. A. Jarosinski, A. L. Biere, E. Curran, T. Burgess, J. C. Louis, F. Collins, J. Treanor, G. Rogers, M. Citron, “Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE” Science, 286, pp 735-741, 1999.
[50] S. Sinha, J. P. Anderson, R. Barbour, G. S. Basi, R. Caccavello, D. Davis, M. Doan, H. F. Dovey, N. Frigon, J. Hong, K. Jacobson-Croak, N. Jewett, P. Keim, J. Knops, I. Lieberburg, M. Power, H. Tan, G. Tatsuno, J. Tung, D. Schenk, P. Seubert, S. M. Suomensaari, S. Wang, D. Walker, V. John, “Purification and cloning of amyloid precursor protein beta-secretase from human brain” Nature, 402, pp 537-540, 1999.
[51] R. Yan, M. J. Bienkowski, M. E. Shuck, H. Miao, M. C. Tory, A. M. Pauley, J. R. Brashier, N. C. Stratman, W. R. Mathews, A. E. Buhl, D. B. Carter, A. G. Tomasselli, L. A. Parodi, R. L. Heinrikson, M. E. Gurney, “Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity” Nature, 402, pp 533-537, 1999.
[52] B. De Strooper, P. Saftig, K. Craessaerts, H. Vanderstichele, G. Guhde, W. Annaert, K. Von Figura, F. Van Leuven, “Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein” Nature, 391, pp 387-390, 1998.
[53] B. Sommer, “Alzheimer’s disease and the amyloid cascade hypothesis: ten years on” Neurosci., 1, pp 87-92, 2002.
[54] P. D. Gorevic, F. Goni, B. Pons-Estel, F. Alvarez, N. S. Press, B. Frangione, “Isolation and partial characterization of neurofibrillary tangles and amyloid plaque core in Alzheimer's disease: immunohistological studies” J. Neuropathol. Exp. Neurol., 45, pp 647–664, 1986.
[55] C. L. Masters, O. Sims, N. A. Weinman, G. Multhaup, B. L. McDonald, K. Beyreuther, “Amyloid plaque core protein in Alzheimer disease and Down syndrome” Proc. Natl. Acad. Sci., 82, pp 4245-4249, 1985.
[56] J. Kang, “The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor” Nature, 325, pp 733-736, 1987.
[57] C. Haass, M. G. Schlossmacher, A. Y. Hung, C. Vigo-Pelfrey, A. Mellon, B. L. Ostaszewski, I. Lieberburg, E. H. Koo, D. Schenk, D. B. Teplow, “Amyloid β peptide is produced by cultured cells during normal metabolism” Nature, 359, pp 322–325, 1992.
[58] P. Seubert, C. Vigo-Pelfrey, F. Esch, M. Lee, H. Dovey, D. Davis, S. Sinha, M. G. Schlossmacher, J. Whaley, C. Swindlehurst, “Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids” Nature, 359, pp 325–327, 1992.
[59] C. Soto, M. Branes, J. Alvarez, N. Inestrosa, “Structural determinants of the Alzheimer's amyloid beta-peptide” J. Neurol. Chem., 63, pp 1191–1198, 1994.
[60] D. Kirschner, H. Inouye, L. Du¡y, A. Sinclair, M. Lind, D. Selkoe, “Synthetic peptide homologous to L-protein from Alzheimer's disease forms amyloid-like fibrils in vitro” Proc. Natl. Acad. Sci., 84, pp 6953-6957, 1987.
[61] R. Cappai and A. R. White, “Molecules in focus Amyloid β” Inter. J. Biochem. Cell Biol., 31, pp 885-889, 1999.
[62] D. Allsop, L. Swanson, S. Moore, Y. Davies, A. York, O. M. A. El-Agnaf, I. Soutar, “Fluorescence anisotropy: a method for early detection of Alzheimer β-peptide (Aβ) aggregation” Biochem. Biophys. Res. Comm., 285, pp 58-63, 2001.
[63] A. M. Morris, M. A. Watzky, R. G. Finke, “Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature” Biochim. Biophys. Acta, 1794, pp 375-397, 2009.
[64] G. M. Shankar, S. Li, T. H. Mehta, A. Garcia-Munoz, N. E. Shepardson, I. Smith, F. M. Brett, M. A. Farrell, M. J. Rowan, C. A. Lemere, C. M. Regan, D. M. Walsh, B. L. Sabatini, D. J. Selkoe, “Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory” Nat. Med. 14, pp 837–842, 2008.
[65] R. H. Takahashi, C. G. Almeida, P. F. Kearney, F. Yu, M. T. Lin, T. A. Milner, G. K. Gouras, “Oligomerization of Alzheimer's beta-amyloid within processes and synapses of cultured neurons and brain” J. Neurosci. 24, pp 3592–3599, 2004.
[66] K. J. Ivins, E. T. Bui, C. W. Cotman, “Beta-amyloid induces local neurite degeneration in cultured hippocampal neurons: evidence for neuritic apoptosis” Neurobiol. Dis., 5, pp 365–378, 1998.
[67] D. T. Loo, A. Copani, C. J. Pike, E. R. Whittemore, A. J. Walencewicz, C. W. Cotman, “Apoptosis is induced by beta-amyloid in cultured central nervous system neurons” Proc. Natl. Acad. Sci., 90, pp 7951–7955, 1993.
[68] C. J. Pike, D. Burdick, A. J. Walencewicz, C. G. Glabe, C. W. Cotman, “Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state” J. Neurosci., 13, pp 1676–1687, 1993.
[69] B. A. Yankner, L. K. Duffy, D. A. Kirschner, “Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides” Science 250, pp 279–282, 1990.
[70] C. Behl, J. B. Davis, F. G. Klier, D. Schubert, “Amyloid beta peptide induces necrosis rather than apoptosis” Brain Res., 645, pp 253–264, 1994.
[71] S. B. Shan, R. Nolan, E. Davis, G. B. Stokin, I. Niesman, I. Canto, C. Glabe, L. S. B. Goldstein, “Examination of potential mechanisms of amyloid-induced defects in neuronal transport” Neurobiol. Dis., 36, pp 11-25, 2009.
[72] M. R. Nilsson, “Techniques to study amyloid fibril formation in vitro”Methods, 34, pp 151-160, 2004.
[73] H. Hideki, N. Kimura, H. Yamaguchi, K. Hasegawa, T. Yokoseki, M. Shibata, N. Yamamoto, M. Michikawa, Y. Yoshikawa, K. Terao, K. Matsuzaki, C. A. Lemere, D. J. Selkoe, H. Naiki, K. Yanagisawa, “A seed for Alzheimer amyloid in the brain.”J. Neurosci., 24, pp 4894-4902, 2004.
[74] A. T. Petkova, Y. Ishii, J. J. Balbach, O. N. Antzutkin, R. D. Leapman, F. Delaglio, R. Tycko, “A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR” Proc. Natl. Acad. Sci., 99, pp 16742-16747, 2002.
[75] T. Luhrs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Dobeli, D. Schubert, R. Riek, “3D structure of Alzheimer’s amyloid-β(1– 42) fibrils” Proc. Natl. Acad. Sci., 102, pp 17342-17347, 2005.
[76] M. Kamihira, A. Naito, S. Tuzi, A. Y. Nosaka, H. Saito, “Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state 13C NMR” Protein Sci., 9, pp 867-877, 2000.
[77] H. Naiki and F. Gejyo, “Kinetic analysis of amyloid fibril formation” Meth. Enzymol., 309, pp 305-318, 1999.
[78] T. Iwatsubo, A. Odaka, N. Suzuki, H. Mizusawa, N. Nukina, Y. Ihara, “Visualization of A beta 42(43) and A beta 40 in senile plaques with endspecific A beta monoclonals: evidence that an initially deposited species is A beta 42(43)” Neuron, 13, pp 45–53, 1994.
[79] K. N. Dahlgren, A. M. Manelli, W. B. Jr. Stine, L. K. Baker, G. A. Krafft, M. J. LaDu, “Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability” J. Biol. Chem., 277, 32046-32053, 2002.
[80] G. Bitan, B. Tarus, S. S. Vollers, H. A. Lashuel, M. M. Condron, J. E. Straub, D. B. Teplow, “A molecular switch in amyloid assembly: Met35 and amyloid beta-protein oligomerization” J. Am. Chem. Soc., 125, pp 15359-15365, 2003.
[81] D. Burdick, B. Soreghan, M. Kwon, J. Kosmoski, M. Knauer, A. Henschen, J. Yates, C. Cotman, C. Glabe, “Assembly and aggregation properties of synthetic Alzheimer’s A4/β amyloid peptide analogs” J. Biol. Chem., 267, pp 546-554, 1992.
[82] W. B. Stine, K. N. Jr., Dahlgren, G. A. Krafft, M. J. LaDu, “In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis.” J. Biol. Chem., 278, pp 11612-11622, 2003.
[83] Y. Tashima, R. Oe, S. Lee, G. Sugihara, E. J. Chambers, M. Takahashi, T. Yamada, “The effect of cholesterol and monosialoganglioside (GM1) on the release and aggregation of amyloid-β peptide from liposomes prepared from brain membrane-like lipids” J. Biol. Chem., 279, pp 17587–17595, 2004.
[84] E. Terzi, G. Holzemann, J. Seelig, “Reversible random coil-β-Sheet transition of the Alzheimer β-amyloid fragment (25-35)” Biochemistry, 33, pp 1345-1350, 1994.
[85] E. Terzi, G. Holzemann, J. Seelig, “Self-association of β-amyloid peptide (1–40) in solution and binding to lipid membranes” J. Mol. Biol., 252, pp 633-642, 1995.
[86] O. Gursky and S. Aleshkov, “Temperature-dependent β-sheet formation in β-amyloid Aβ1-40 peptide in water: uncoupling β-structure folding from aggregation” Biochim. Biophys. Acta, 1476, pp 93-102, 2000.
[87] R. Sabat´e, M. Gallardo, J. Estelrich, “Temperature dependence of the nucleation constant rate in β amyloid fibrillogenesis” Int. J. Biol. Macromol., 35, pp 9-13, 2005.
[88] L. P. Choo-Smith, W. Garzon-Rodriguez, C. G. Glabe, W. K. Surewicz, “Acceleration of amyloid fibril formation by specific binding of Aβ(1–40) peptide to ganglioside containing membrane vesicles” J. Biol. Chem., 272, pp 22987-22990, 1997.
[89] S. J. Wood, B. Maleeff, T. Hart, R. Wetzel, “Physical, morphological and functional differences between pH 5.8 and 7.4 aggregates of the Alzheimer’s amyloid peptide Aβ” J. Mol. Biol., 256, pp 870-877, 1996.
[90] M. R. Nichols, M. A. Moss, D. K. Reed, W. L. Lin, R. Mukhopadhyay, J. H. Hoh, T. L. Rosenberry, “Growth of β-amyloid(1-40) protofibrils by monomer elongation and lateral association, characterization of distinct products by light scattering and atomic force microscopy” Biochemistry, 41, pp 6115-6127, 2002.
[91] E. Abe, F. Casamenti, L. Giovannelli, C. Scali, G. Pepeu, “Administration of amyloid beta-peptides into the medial septum of rats decreases acetylcholine release from hippocampus in vivo” Brain Res., 636, pp162-164, 1994.
[92] M. P. Mattson, K. P. Tomaselli, R. E. Rydel, “Calcium-destabilizing and neurodegenerative effects of aggregated, β-amyloid peptide are attenuated by basic FGF” Brain Res., 621, pp 35-49, 1993.
[93] J. S. Whitson, M. P. Mims, W. J. Strittmatter, T. Yamaki, J. D. Morrisett, S. H. Appel, “Attenuation of the neurotoxic effect of Aβ amyloid peptide by apolipoprotein E” Biochem. Biophy. Res. Commun., 199, pp 163-170, 1994.
[94] C.-L.Shen and R. M. Murphy, “Solvent effects on self-assembly of β-amyloid peptide” Biophys. J., 69, pp 640-651, 1995.
[95] O. Crescenzi, S. Tomaselli, R. Guerrini, S. Salvadori, A. M. D'Ursi, P. A. Temussi, D. Picone, “Solution structure of the Alzheimer amyloid beta-peptide (1–42) in an apolar microenvironment-similarity with a virus fusion domain” Eur. J. Biochem., 269, pp 5642-5648, 2002.
[96] S. Bhattacharjya, J. Venkatraman, A. Kumar, P. Balaram, “Fluoroalcohols as structure modifiers in peptides and proteins: hexafluoroacetone hydrate stabilizes a helical conformation of melittin at low pH” J. Peptide Res., 54, pp 100– 111, 1999.
[97] R. Rajan, S. K. Awasthi, S. Bhattachajya, P. Balaram, “Teflon-coated peptides: hexafluoroacetone trihydrate as a structure stabilizer for peptides” Biopolymers, 42, pp 125–128, 1997.
[98] M. R. Nichols, M. A. Moss, D. K. Reed, S. Cratic-McDaniel, J. H. Hoh, T. L. Rosenberry, “Amyloid-β protofibrils differ from amyloid-β aggregates induced in dilute hexafluoroisopropanol in stability and morphology” J. Biol. Chem., 280, pp 2471-2480, 2005.
[99] S. Tomaselli, V. Esposito, P. Vangone, N. A. J. van Nuland, A. M. J. J. Bonvin, T. Tancredi, P. A. Temussi, D. Picone, “The α to β? conformational transition of Alzheimer's Abeta (1-42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of the beta conformation seeding” ChemBiochem, 7, pp 257-267, 2006.
[100] C. Opazo, X. Huang, R. A. Cherny, R. D. Moir, A. E. Roher, A. R. White, R. Cappai, C. L. Masters, R. E. Tanzi, N. C. Inestrosa, A. I. Bush, “Metalloenzyme-like Activity of Alzheimer's Disease β-Amyloid Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2” J. Biolo. Chem., 277, pp 40302-40308, 2002.
[101] J. T. Rogers, J. D. Randall, C. M. Cahill, P. S. Eder, X. Huang, H. Gunshin, L. Leiter, J. McPhee, S. S. Sarang, T. Utsuki, N. H. Greig, D. K. Lahiri, R. E. Tanzi, A. I. Bush, T. Giordano, S. R. Gullans, “An iron-responsive element type II in the 5′-untranslated region of the Alzheimer's amyloid precursor protein transcript” J. Biol. Chem., 277, pp 45518–45528, 2002.
[102] C. J. Frederickson, S. W. Suh, D. Silva, C. J. Frederickson, R. B. Thompson, “Importance of zinc in the central nervous system: the zinc containing neuron” J. Nutr., 130, pp 1471S–1483S, 2000.
[103] J. Q. Bieschke, E. T. Zhang, R. A. Powers, R. A. Lerner, J. W. Kelly, “Oxidative metabolites accelerate Alzheimer’s amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation” Biochemistry, 44, pp 4977-4983, 2005.
[104] D. J. Selkoe, “The ups and downs of Abeta” Nature Med., 12, pp 758–759, 2006.
[105] P. T. Wong, J. A. Schauerte, K. C. Wisser, H. Ding, E. L. Lee, D. G. Steel, A. Gafni, “Amyloid-β membrane binding and permeabilization are distinct processes influenced separately by membrane charge and fluidity” J. Mol. Biol., 386, pp 81-96, 2009.
[106] A. Kakio, S. I., Nishimoto, K. Yanagisawa, Y. Kozutsumii, K. Matsuzaki, “Cholesterol-dependent formation of GM1 ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid” J. Biol. Chem., 276, pp 24985-24990, 2001.
[107] K. Yanagisawa, “Role of gangliosides in Alzheimer’s disease” Biochim. Biophys. Acta, 1768, pp 1943-1951, 2007.
[108] J. McLaurin and A. Chakrabartty, “Characterization of the interactions of Alzheimer beta-amyloid peptides with phospholipid membranes” Eur. J. Biochem., 245, pp 355–363, 1997.
[109] J. M. Alarcon, J. A. Brito, T. Hermosilla, I. Atwater, D. Mears, E. Rojas, “Ion channel formation by Alzheimer's disease amyloid beta-peptide (Abeta40) in unilamellar liposomes is determined by anionic phospholipids” Peptides, 27, pp 95–104, 2006.
[110] E. Terzi, G. Holzemann, J. Seelig, “Alzheimer β-amyloid peptide 25-35: electrostatic interactions with phospholipid membranes” Biochemistry, 33, pp 7434–7441, 1994.
[111] A. Kakio, Y. Yano, D. Takai, Y. Kuroda, O. Matsumoto, Y. Kozutsumi, K. Matsuzaki, “Interaction between amyloid β-protein aggregates and membranes” J. Pept. Sci., 10, pp 612-621, 2004.
[112] K. Matsuzaki, C. Horikiri, “Interactions of amyloid β-peptide (1-40) with ganglioside-containing membranes” Biochemistry, 38, pp 4137-4142, 1999.
[113] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, (Eds), Molecular Biology of the Cell, Taylor and Francis Group, New York, 2002.
[114] Y. Nagai, “Functional roles of gangliosides in bio-signaling” Behav. Brain Res., 66, pp 99-104, 1995.
[115] J. McLaurin, T. Franklin, P. E. Fraser, A. Chakrabartty, “Structural transitions associated with the interaction of Alzheimer β-amyloid peptides with gangliosides” J. Biol. Chem., 273, pp 4506-4515, 1998.
[116] L. P. Choo-Smith, W. K. Surewicz, “The interaction between Alzheimer amyloid (1-40) peptide and ganglioside GM1-containing membranes” FEBS Letters, 402, pp 95-98, 1997.
[117] C. M. Yip, E. A. Elton, A. A. Darabie, M. R. Morrison, J. McLaurin, “Cholesterol, a modulator of membrane-associated Aβ-fibrillogenesis and neurotoxicity” J. Mol. Biol., 311, pp 723-734, 2001.
[118] J. Abad-Rodriguez, M. D. Ledesma, K. Craessaerts, S. Perga, M. Medina, A. Delacourte, C. Dingwall, B. De Strooper, C. G. Dotti, “Neuronal membrane cholesterol loss enhances amyloid peptide generation” J. Cell. Biol., 167, pp 953–960, 2004.
[119] M. Kawahara and Y. Kuroda, “Intracellular calcium changes in neuronal cells induced by Alzheimer’s beta-amyloid protein are blocked by estradiol and cholesterol” Cell. Mol. Neurobiol., 21, pp 1–13, 2001.
[120] M. D. Ledesma and C. G. Dotti, “Amyloid excess in Alzheimer’s disease: what is cholesterol to be blamed for?” FEBS Lett., 580, pp 5525–5532, 2006.
[121] M. Mazziotti and D. H. Perlmutter, “Resistance to the apoptotic effect of aggregated amyloid-β peptide in several different cell types including neuronal- and hepatoma-derived cell lines” Biochem. J., 332, pp 517–524, 1998.
[122] I. Sponne, A. Fifre, V. Koziel, T. Oster, J. L. Olivier, T. Pillot, “Membrane cholesterol interferes with neuronal apoptosis induced by soluble oligomers but not fibrils of the amyloid β peptide” FASEB J., 18, pp 836–838, 2004.
[123] Y. Zhou and J. S. Richardson, “Cholesterol protects PC12 cells from betaamyloid induced calcium disordering and cytotoxicity” Neuroreport, 7, pp 2487–2490, 1996.
[124] T. A. Mirzabekov, M. C. Lin, B. Kagan, “Pore formation by the cytotoxic islet amyloid peptide amylin” J. Biol. Chem., 271, pp 1988–1992, 1996.
[125] A. Pensalfini, M. Zampagni, G. Liguri, M. Becatti, E. Evangelisti, C. Fiorillo, S. Bagnoli, E. Cellini, B. Nacmias, S. Sorbi, C. Cecchi, “Membrane cholesterol enrichment prevents Aβ-induced oxidative stress in Alzheimer's fibroblasts” Neurobiol. Aging, 2009. doi:10.1016/j.neurobiolaging.2009.02.010
[126] A. Kakio, S. Nishimoto, Y. Kozutsumi, K. Matsuzaki, “Formation of a membrane-active form of amyloid β-protein in raft-like model membranes” Biochem. Biophys. Res. Comm., 303, pp 514-518, 2003.
[127] S. R. Ji, Y. Wu, S. F. Sui, “Cholesterol is an important factor affecting the membrane insertion of β-amyloid peptide (Aβ1–40), which may potentially inhibit the fibril formation” J. Biol. Chem., 277, pp 6273–6279, 2002.
[128] M.-S. Lin, L.-Y. Chen, H.-T. Tsai, S. S.-S. Wang, Y. Chang, A. Higuchi, W.-Y. Chen “Investigation of the mechanisms of β-amyloid fibril formation by kinetic and thermodynamic analyses” Langmuir, 24, pp 5802-5808, 2008.
[129] M.-S. Lin, L.-Y. Chen, S. S.-S. Wang, Y. Chang, W.-Y. Chen, “Examining the levels of ganglioside and cholesterol in cell membrane on attenuation the cytotoxicity of beta-amyloid peptide” Colloids Surf. B, 65, pp 172-177, 2008.
[130] Z. X. Sun, Q. H. Zhoua, S. F. Sui, “Cholesterol depletion inhibits the degradation of amyloid β-peptide in rat pheochromocytoma (PC12) cells” Neurosci. Letters, 391, pp 71–75, 2005.
[131] N. Arispe and M. Doh, “Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease Aβ(1–40) and (1–42) peptides” FASEB J., 16, pp 1526-1536, 2002.
[132] K. Matsuzaki, “Physicochemical interaction of amyloid β-peptide with lipid bilayers” Biochim. Biophys. Acta, 1768, pp 1935-1942, 2007.
[133] 左明雪,細胞和分子神經生物學,第一版,藝軒圖書出版社,台北市,民國九十二年。
[134] O. Simakova and N. J. Arispe, “The cell-selective neurotoxicity of the Alzheimer's Abeta peptide is determined by surface phosphatidylserine and cytosolic ATP levels. Membrane binding is required for Abeta toxicity” J. Neurosci., 27, pp 13719–13729, 2007.
[135] K. Balasubramanian, B. Mirnikjoo, A. J. Schroit, “Regulated externalization of phosphatidylserine at the cell surface: implications for apoptosis” J. Biol. Chem., 282, pp 18357–18364, 2007.
[136] K. M. Thelen, P. Falkai, T. A. Bayer, D. Lutjohann, “Cholesterol synthesis rate in human hippocampus declines with aging” Neurosci. Lett., 403, pp 15–19, 2006.
[137] W. G. Wood, F. Schroeder, U. Igbavboa, N. A. Avdulov, S. V. Chochina, “Brain membrane cholesterol domains, aging and amyloid beta-peptides” Neurobiol. Aging, 23, pp 685–694, 2002.
[138] M. Bokvist, F. Lindstrom, A. Watts, G. Grobner, “Two types of Alzheimer’s β-amyloid (1-40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation” J. Mol. Biol., 335, pp 1039-1049, 2004.
[139] T. Ariga, K. Kobayashi, A. Hasegawa, M. Kiso, H. Ishida, T. Miyatake, “Characterization of high-affinity binding between ganglioside and amyloid β-protein” Arch. Biochem. Biophys., 388, pp 225-230, 2001.
[140] J. J. Kremer and R. M. Murphy, “Kinetics of adsorption of β-amyloid peptide Aß (1~40) to lipid bilayers” Biochem. Biophys. Methods, 57, pp 159-169, 2003.
[141] T. Valdes-Gonzalez, J. Inagawa, T. Ido, “Neuropeptides interact with glycolipid receptors a surface plasmon resonance study” Peptides, 22, pp 1099-1106, 2001.
[142] N. Papo and Y. Shai “Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by Lytic peptides” Biochemistry, 42, pp 458-466, 2003.
[143] H. Mozsolits, H.-J. Wirth, J. Werkmeister, M.-I. Aguilar, “Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance” Biochim. Biophys. Acta, 1512, pp 64-76, 2001.
[144] T. A. Morton, D. G. Myszka, I. M. Chaiken, “Interpreting complex binding kinetics from optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and numerical integration” Anal. Biochem., 227, pp 176-185, 1995.
[145] H. Schindler, “Formation of planar bilayers from artificial or native membrane vesicles” FEBS Lett., 122, pp 77-79, 1980.
[146] J. Seelig, “Thermodynamics of lipid–peptide interactions” Biochim. Biophys. Acta, 1666, pp 40-50, 2004.
[147] M. J. Q. Widenbrant, J. Rajadas, C. Sutardja, G. Fuller, “Lipid-induced β-amyloid peptide assemblage fragmentation” Biophys. J., 91, pp 4071-4080, 2006.
[148] M. J. Saxton and K. Jacobson, “Single-particle tracking: applications to membrane dynamics” Ann. Rev. Biophys. Biomol. Struct., 26, pp 373–399, 1997.
[149] Q. A. Hong, M. P. Sheetz, E. L. Elson, “Single-particle tracking-analysis of diffusion and flow in two-dimensional systems” Biophys. J., 60, pp 910-921, 1991.
[150] D. E. Graham and M. C. Phillips, “Proteins at liquid interfaces” J. Colloid Interface Sci., 70, pp 403-414, 1978.
[151] Van Aken, G. A. Dickinson, in E., Lorient, D. (Eds), Food macromolecules and colloids, Roy. Soc. Chem., 1995, pp. 43-59.
[152] J. J. Kremer, M. M. Pallitto, D. J. Sklansky, R. M. Murphy, “Correlation of β-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes” Biochemistry, 39, pp 10309-10318, 2000.
[153] W. G. Wood, G. P. Eckert, U. Igbavboa, W. F. Muller, “Amyloid beta-protein interactions with membranes and cholesterol: causes or casualties of Alzheimer’s disease” Biochim. Biophys. Acta, 1610, pp 281–290, 2003.
[154] W. G. Wood, G. P. Eckert, U. Igbavboa, W. E. Muller, “Amyloid beta-protein interactions with membranes and cholesterol: causes or casualties of Alzheimer’s disease” Biochem. Biophys. Acta, 1610, pp 281-290, 2003.
[155] W. C. Shyu, “Introduction of Alzheimer’s disease treatment” J. Long-Tem Care, 7, pp 305-316, 2004.
[156] M.-S. Lin, H.-M. Chiu, F.-J. Fan, H.-T. Tsai, S. S.-S. Wang, Y. Chan, W. Y. Chen, “Kinetics and enthalpy measurements of interaction between?β-amyloid and liposomes by surface plasmon resonance and isothermal titration microcalorimetry” Colloids Surf. B, 58, pp 231-236, 2007.
[157] H. LeVine, “Thioflavine T interaction with synthetic Alzheimer's disease β-amyloid peptides: detection of amyloid aggregation in solution” Protein Sci., 2, pp 404-410, 1993.
[158] N. Arispe and M. Doh, “Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AβP (1-40) and (1-42) peptides” FASEB, 16, pp 1526-1536, 2006.
[159] D. Lorinczy (Eds), The nature of biological systems as revealed by thermal methods, Kluwer Academic Publ., Dordrecht, 2004, pp. 217-251.
[160] F.-Y. Lin, W.-Y. Chen, M. T. W. Hearn, “Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography: effects of salts, hydrophobicity of the sorbent, and structure of the protein” Anal. Chem., 73, pp 3875-3883, 2001.
[161] M.-S. Lin, X.-B. Chen, S. S.-S. Wang, Y. Chang, W. Y. Chen, “Dynamic fluorescence imaging analysis to investigate the cholesterol recruitment in lipid monolayer during the interaction between β-amyloid (1–40) and lipid monolayers” Colloids Surf. B, 74, pp 59-66, 2009.
[162] J. P. Slotte and P. Mattjus, “Visualization of lateral phases in cholesterol and phosphatidylcholine monolayers at the air/water interface- a comparative study with two different reporter molecules” Biochim. Biophys. Acta, 1254 pp 22-29, 1995.
[163] A. Silberberg, “The adsorption of flexible macromolecules. Part II. The shape of the adsorbed molecule; the adsorption isotherm surface tension, and pressure” J. Phys. Chem., 66, pp 1884-1907, 1962.
[164] C. A. J. Hoeve, “Theory of polymer adsorption at interfaces” J. Polym. Sci. Part C, 34, pp 1-10, 1971.
[165] D. E. Graham and M. C. Phillips, “Proteins at liquid interfaces” Colloid interf. sci., 70, pp 403-414, 1979.
[166] H. L. Frisch, S. Al-Madfai, “Surface tension of synthetic high polymer solutions” J. Amer. Chem. Soc., 80, pp 3561-3565, 1958.
[167] G. P. Gorbenko and P. K. Kinnunen, “The role of lipid-protein interactions in amyloid-type protein fibril formation” Chem. Phys. Lipids, 141, pp 72-82, 2006.
[168] A. Kakio, S.-I. Nishimoto, K. Yanagisawa, Y. Kozutsumi, K. Matsuzaki, “Interactions of amyloid β-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid” Biochemistry, 41, pp 7385-7390, 2002.
[169] S. S.-S. Wang, T. A. Good, D. L. Rymer, “The Influence of Phospholipid Membranes on Bovine Calcitonin Structure and Toxicity” Int. J. Biochem. Cell Biol., 37, pp 1656-1669, 2005.
[170] A. Schneider, W. Schulz-Achaeffer, T. Hartmann, J. B. Schulz, M. Simons, “Cholesterol depletion reduces aggregation of amyloid-beta peptide in hippocampal neurons” Neurobiol. Dis., 23, pp 573-577, 2006.
[171] E. Canay, K. Y. C. Lee, “Insertion of Alzheimer's Aβ40 peptide into lipid monolayers” Biophys. J., 87, pp 1732-1740, 2004.
[172] E. Terzi, G. Holzemann, J. Seelig, “Interaction of Alzheimer β-amyloid peptide(1-40) with lipid membranes” Biochemistry, 36, pp 14845-14852, 1997.
[173] D. Takashimori, P. Daniel, T. Terrence, A. M. R. Ba, D. L. Sparks, D. Anthony, C. Fiona, I. A. Lailai, A. H. James, W. D. Dennis, J. M. Michael, “Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(sw) mice” J. Neuropathol. Exp. Neurol., 60, pp 778-785, 2001.
[174] T. Yoshihiko, R. Oe, S. Lee, G. Sugihara, E. J. Chambers, M. Takahashi, T. Yamada, “The effect of cholesterol and monosialoganglioside (GM1) on the release and aggregation of amyloid β-peptide from liposomes prepared from brain membrane-like lipids” J. Biol. Chem., 279, pp 17587-17595, 2004.
[175] “Real time, high resolution studies of lipid bilayer formation” Application note 06. www.farfield-sensors.com.
[176] C. M. Yip, J. McLaurin, “Amyloid-βpeptide assembly: a critical step in fibrillogenesis and membrane disruption” Biophys. J., 80, pp 1359-1371, 2001.
[177] C. M. Yip, A. A. Darabie, J. McLaurin, “Aβ42-peptide assembly on lipid bilayers” J. Mol. Biol., 318, pp 97-107, 2002.
[178] K. Yanagisawa, A. Odaka, N. Suzuki, Y. Ihara, “GM1 ganglioside-bound amyloid β-protein (Aβ): A possible form of preamyloid in Alzheimer’s disease” Nat. Med., 1, pp 1062–1066, 1995.
[179] K. A. DaSilva, J. E. Shaw, J. McLaurin, “Amyloid-beta fibrillogenesis: Structural insight and therapeutic intervention” Exp. Neurol., 2009. doi:10.1016/j.expneurol.2009.08.032
[180] R. Kayed, E. Head, J. L. Thompson, T. M. Mclntire, S. C. Milton, C. W. Cotman, C. G. Glabe, “Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis” Science, 300, pp 486-489, 2003.
[181] G. D. Fasman (Eds), Circular Dichroism and the Conformational Analysis of Biomolecules, Plenum Press, New York, 1996.
[182] R. Pribic, I. H. M. van Stockkum, D. Chapman P. I. Haris, M. Bloemedal, “Protein secondary structure from Fourier transform infrared and/or circular dichroism spectra” Anal. Biochem., 214, pp 366-378, 1993.
[183] A. Westlind-Danielsson and G. Arnerup, “Spontaneous in vitro formation of supramolecular beta-amyloid structures, “betaamy balls”, by beta-amyloid 1–40 peptide” Biochemistry, 40, pp 14736–14743, 2001.
[184] L. C. Salay, W. Qi, B. Keshet, L. K. Tamm, K. J. Fernandez, “Membrane interactions of a self-assembling model peptide that mimics the self-association, structure and toxicity of Aβ(1-40)” Biochim. Biophys. Acta, 1788, pp 1714-1721, 2009.
[185] V. Chauhan and A. Chauhan, “Oxidative stress in Alzheimer's disease” Pathophysiology, 13, pp 195–208, 2006.
[186] H. L. Weiner, D. Frenkel, D. “Immunology and immunotherapy of Alzheimer's disease” Nat. Rev. Immunol., 6, pp 404–416, 2006.
[187] R. Borghi, S. Patriarca, N. Traverso, A. Piccini, D. Storace, A. Garuti, G. Cirmena, P. Odetti, M. Tabaton, “The increased activity of BACE1 correlates with oxidative stress in Alzheimer's disease” Neurobiol. Aging, 28, pp 1009–1014, 2007.
[188] D. A. Butterfield, J. Drake, C. Pocernich, A. Castegna, “Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid beta-peptide” Trends Mol. Med., 7, pp 548–554, 2001.
[189] W. R. Markesbery and M. A. Lovell, “Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer's disease” Neurobiol. Aging, 19, pp 33–36, 1998.
[190] L. M. Sayre, M. G. Zagorski, W. K. Surewicz, G. A. Krafft, G. Perry, “Mechanisms of neurotoxicity associated with amyloid beta deposition and the role of free radicals in the pathogenesis of Alzheimer's disease: a critical appraisal” Chem. Res. Toxicol., 10, pp 518–526, 1997.
[191] M. Coles, W. Bicknell, A. A. Watson, D. P. Fairlie, D. J. Craik, “Solution structure of amyloid β-peptide(1-40) in a water-micelle environment. Is the membrane- spanning domain where we think it is?” Biochemistry, 37, 11064–11077, 1998.
[192] C. Soto, E. M. Castaño, B. Frangione, N. C. Inestrosa, “The alpha-helical to beta-strand transition in the amino-terminal fragment of the amyloid beta-peptide modulates amyloid formation” J. Bio.l Chem., 270, pp 3063–3067, 1995.
[193] H. Sticht, P. Bayer, D. Willbold, S. Dames, C. Hilbich, K. Beyreuthe, R. W. Frank, P. Rosch, “ Structure of amyloid A4-(1-40)-peptide of Alzheimer's disease” Eur. J. Biochem., 233, pp 293–298, 1995.
[194] C. J. Barrow, A. Yasuda, P. T. M. Kenny, M. G. Zagorski, “Solution Conformations and Aggregational Properties of Synthetic Amyloid Beta-Peptides of Alzheimers-Disease – Analysis of Circular-Dichroism Spectra” J. Mol. Biol., 225, pp 1075-1093, 1992.
[195] H. Y. Shao, S. C. Jao, K. Ma, M. G. Zagorski, “Solution structures of micelle-bound amyloid beta-(1-40) and beta-(1-42) peptides of Alzheimer's disease” J. Mol. Biol., 285, pp 755-773, 1999.
[196] H. W. Huang, “Action of antimicrobial peptides: two-state model” Biochemistry, 39, pp 8347-8352, 2000.
[197] S. Barghorn, V. Nimmrich, A. Striebinger, C. Krantz, P. Keller, B. Janson, “Globular amyloid beta-peptide oligomer—A homogenous and stable neuropathological protein in Alzheimer’s disease” J Neurochem., 95, pp 834–847, 2005.
[198] J. P. Cleary, D. M. Walsh, J. J. Hofmeister, G. M. Shankar, M. A. Kuskowski, D. J. Selkoe, “Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function” Nature Neurosci., 8, pp 79–84, 2005.
[199] D. M. Walsh, I. Klyubin, J. V. Fadeeva, W. K. Cullen, R. Anwyl, M. S. Wolfe, “Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo” Nature, 416, pp 535–539, 2002.
[200] D. M. Walsh, A. Lomakin, G. B. Benedek, M. M. Condron, D. B. Teplow, “Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate” J. Biol. Chem., 272, pp 22364–22372, 1997.
[201] J. D. Harper, C. M. Lieber, P. T. Jr. Lansbury, “Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-beta protein” Chem. Biol., 4, pp 951–959, 1997.
[202] P. J. Crouch, S.-M. E. Harding, A. R. White, J. Camakaris, A. I. Bush, C. L. Masters, “Mechanisms of Aβ mediated neurodegeneration in Alzheimer’s disease” Inter. J. Biochem. Cell Biol., 40, pp 181-198, 2008.
[203] R. Tycko, “Insights into the amyloid folding problem from solid-state NMR” Biochemistry, 42, pp 3151-3159, 2003.
[204] G. Bitan, M. D. Kirkitadze, A. Lomakin, S. S. Vollers, G. B. Benedek, D. B. Teplow, “Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways” Proc. Natl. Acad. Sci., 100, pp 330-335, 2003.
[205] K. H. Gylys, J. A. Fein, F. Yang, C. A. Miller, G. M. Cole, “Increased cholesterol in Aβ-positive nerve terminals from Alzheimer's disease cortex” Neurobiol. Aging, 28, pp 8–17, 2007.
[206] M. Molander-Melin, K. Blennow, N. Bogdanovic, B. Dellheden, J. E. Mansson, P. Fredman, “Structural membrane alterations in Alzheimer brains found to be associated with regional disease development; increased density of gangliosides GM1 and GM2 and loss of cholesterol in detergent-resistant membrane domains” J. Neurochem., 92, pp 171–182, 2005.
[207] D. A. Brown, “Seeing is believing: visualization of rafts in model membranes” Proc. Natl. Acad. Sci., 98, pp 10517–10518, 2001.
[208] D.-Z Liu, W.-Y. Chen, L.-M. Tasi, S.-P. Yang, “Microcalorimetric and shear studies on the effects of cholesterol on the physical stability of lipid vesicles” Colloids Surf. A, 172, pp 57-67, 2000.
[209] J. A. Lundbaek, P. Birn, J. Girshman, A. J. Hansen, O. S. Anderson, “Membrane stiffness and chanel function” Biochemistry, 35, pp 3825-3830, 1996.
[210] L.-Y. Chen, J.-J. Lin, M.-S. Lin, S.-M. Chiu, W.-Y. Chen, “Kinetics and morphology analysis of the effects of lipid composition on fabrication a mimetic bio-membrane on Brij-76 derived surface” Colloids Surf. A, 296, pp 86-91, 2007.
[211] J. A. Carson and A. J. Turner, “β-amyloid catabolism: roles for neprilysin (NEP) and other metallopeptidases?” J. Neurochem., 81, pp 1–8, 2002.
[212] U. von Stockar, T. Maskow, J. Liu, I. W. Marison, R. Patino, “Thermodynamics of microbial growth and metabolism: an analysis of the current situation” J. Biotechnol., 121, pp 517-533, 2006.
[213] C. Jungo, J. Urfer, A. Zocchi, I. Marison, U. von Stockar, “Optimisation of culture conditions with respect to biotin requirement for the production of recombinant avidin in Pichia pastoris” J. Biotechnol., 127, pp 703-715, 2007.
[214] C. Larsson, U. von Stockar, I. Marison, L. Gustafsson, “Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions” J. Bacteriol., 175, pp 4809-4816, 1993.
[215] T. Maskow, S. Muller, A. Losche, H. Harms, R. B. Kemp, “Control of continuous polyhydroxybutyrate synthesis using calorimetry and flow cytometry” Biotechnol. Bioeng., 93, pp 541-552, 2006.
[216] T. Maskow, D. Olomolaiye, U. Breuer, R. B. Kemp, “Flow Calorimetry and dielectric spectroscopy to control the bacterial conversion of toxic substrates into polyhydroxyalcanoates” Biotechnol. Bioeng., 85, pp 547-552, 2004.
[217] W. Wieser and E. Gnaiger (Eds), Energy Transformations in Cells and Organisms. Georg Thieme Verlag,. Stuttgart, New York, 1989, pp. 91-97.
[218] R. B. Kemp and Y. Guan, “Heat flux and the calorimetric-respirometric ratio as measures of catabolic flux in mammalian cells” Thermochim. Acta., 300, pp 199-211, 1997.
[219] M. P. Mattson, S. W. Barger, B. Cheng, I. Lieberburg, V. L. Smith-Swintosky, R. E. Rydel, “β-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer's disease” Trends Neurosci., 16, pp 409–414, 1993.
[220] N. Arispe, E. Rojas, H. B. Pollard, “Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum” Proc. Natl. Acad. Sci., 90, pp 567–571, 1993.
[221] R. B. Kemp, “Calorimetric studies of heat flux in animal cells” Therrnochim. Acta, 193, pp 253-267, 1991.
[222] R. B. Kemp, P. M. Evans, Y. Guan, “An enthalpy balance approach to the study of metabolic activity in mammalian cells” J. Thermal Anal., 49, pp 755-770, 1997.
[223] D. Lorinczy (Eds), The Nature of Biological Systems as Revealed by Thermal Methods, Kluwer Academic Publ., Dordrecht, 2004, pp. 217-251.
[224] J. D. Harper and P. T. Jr. Lansbury, “Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins” Annu. Rev. Biochem., 66, pp 385-407, 1997.
[225] A. D. Williams, S. Shivaprasad, R. Wetzel, “Alanine scanning mutagenesis of Aβ(1-40) amyloid fibril stability” J. Mol. Biol., 357, pp 1283-1294, 2006.
[226] P. Sengupta, K. Garai, B. Sahoo, Y. Shi, D. J. Callaway, S. Maiti, “The amyloid beta peptide (Abeta(1–40)) is thermodynamically soluble at physiological concentrations” Biochemistry, 42, pp 10506-10513, 2003.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2010-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明