博碩士論文 93446003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.118.12.50
姓名 蘇騰昇(Teng-Sheng Su)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 在TFT-LCD廠的設施佈置與自動化物料搬運系統控制之研究
(A Study on the Facilities Layout and the Control of Automated Material Handling Systems in a TFT-LCD Plant)
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對TFT-LCD(thin-film transistor liquid-crystal display)公司而言,擁有一座TFT-LCD廠是一項非常昂貴的投資。因此,「如何增加TFT-LCD廠的生產效率」對公司的經營者是一個非常重要的議題,而「TFT-LCD廠內的物料流動效率」是影響TFT-LCD廠之生產效率的一個關鍵因素。影響「TFT-LCD廠內的物料流動效率」的因素有許多,其中兩項重要因素為「TFT-LCD廠Bay內(intra-bay)的設施佈置」與「TFT-LCD廠Bay內自動化物料搬運系統(Automated Material Handling System;AMHS)的派送控制」。不同於晶圓廠的Bay內物料搬運方式,在TFT-LCD廠內常見的一種Bay內物料搬運方式是將Stocker一直延伸到Bay內,並且於Stocker的封閉式空間內,利用Stocker內部的stacker crane(S/R machine)將物料於機器與儲位之間做運送。換言之,此種Stocker系統不僅有儲存的功能也有運送的功能。在業界,此種Stocker系統被稱為Stocker Direct Handling System(又稱為In-Line Stocker)。另外,有些TFT-LCD廠也利用RGV(Rail-Guided Vehicle)來輔助In-Line Stocker進行Bay內的物料搬運。換言之,TFT-LCD廠Bay內AMHS的設置型態也可能會不同。由於,TFT-LCD廠Bay內之特殊的物料搬運方式與其Bay內AMHS的不同設置型態,TFT-LCD廠Bay內的設施佈置問題將不同於一般晶圓廠Bay內的設施佈置問題。本文第一部份首先研究在具多stacker crane的In-Line Stocker之TFT-LCD廠Bay內的機器佈置問題。而且,我們也將在具In-Line Stocker系統與RGV系統的TFT-LCD 廠Bay 內的機器佈置問題加以探討。因為In-Line Stocker裡多stacker crane的設計,當解決TFT-LCD廠Bay內的機器佈置,我們不僅需決定機器位置,還有區域分割的設計。目的包含總流量距離的極小化,還有stacker crane之間的工作負荷平衡。我們提出一套採用啟發式與數學方法的佈置程序,以用來輔助我們完成上述任務。我們將求解一個模仿真實案例問題,來說明所提出的佈置程序。最後,透過模擬實驗與比較結果證明提出的佈置方法,是有能力產生一個可行且好的TFT-LCD廠Bay內的機器佈置。本文第二部份的研究主題是在In-Line Stocker裡stacker crane之控制問題研究,並且定義三種stacker crane的控制問題及分別針對每個問題發展控制規則。這三種問題分別是task-determination問題、port-clearing 問題及cassette-delivery問題。接著建立電腦模擬分別比較這三種問題所提出的控制規則的績效。本文的目的是想藉由對這兩類問題的探討與研究,來提升TFT-LCD廠Bay內的物料流動效率,進而改善TFT-LCD廠的生產效率、降低其生產成本與提升其競爭力。
摘要(英) Building a thin-film transistor liquid-crystal display (TFT-LCD) plant is a huge investment, thus it is very important to increase the production efficiency of a TFT-LCD plant. One important factor that affects a TFT-LCD plant’s production efficiency is the plant’s material flow efficiency. Many factors can affect a TFT-LCD plant’s material flow efficiency. Among them, a TFT-LCD plant’s intra-bay facility layout and the dispatching control of the plant’s intra-bay automated material handling systems (AMHSs) are two critical ones. The way that material is handled in a TFT-LCD bay is different from that in a wafer-fab bay. The stocker of a wafer-fab bay is located at one end of the bay and only provides the storage function. However, the stocker of a TFT-LCD bay is extended all the way into the bay. Furthermore, the stocker of a TFT-LCD bay not only has the storage function, but also can transport cassettes between machines, ports and storage cells. This type of stocker is referred to as ‘stocker direct handling system’ also known as ‘in-line stocker.’ In some TFT-LCD plants, rail guided vehicles (RGVs) are also used to assist in-line stocker transporting cassettes. The unique way that an in-line stocker handles cassettes and the possible presence of RGVs have made the layout problem of a TFT-LCD bay different from that of a wafer-fab bay. In the first part of this paper, we study the machine layout problem in a TFT-LCD bay with a multiple-stacker crane in-line stocker. Furthermore, the machine layout within a TFT-LCD bay with an in-line stocker system and an RGV system is further investigated. Due to its multiple-zone in-line stocker, solving a TFT-LCD bay’s machine layout requires us to determine not only the positions of the machines, but also the zone division design. The objectives include the minimization of total flow distance and the workload balance between stacker cranes. We propose a layout procedure that adopts heuristic and mathematical approaches to assist us in accomplishing the aforementioned tasks. An example problem mimicking a real-case problem was solved to illustrate the proposed layout procedure. The simulation and comparison results demonstrate the capability of the proposed layout method in producing a feasible and good machine layout in a TFT-LCD bay. In the second part of this paper, we study the dispatching control problem of the stacker cranes of in-line stockers by identifying three control problems of stacker cranes and developing control rules for each of them. These three problems are task-determination problem, the port-clearing problem, and the cassette-delivery problem. Computer simulations were conducted to compare the performance of the rules proposed for each of these three problems. The objective of this paper is to optimize the material flow efficiency within a TFT-LCD bay. By doing so, it is hoped that the TFT-LCD plant’s operational efficiency can be improved, its production cost can be reduced and its competitiveness can be increased.
關鍵字(中) ★ 模擬技術
★ 具內嵌式自動倉儲
★ 機器佈置問題
★ TFT-LCD廠區
★ 派送控制
★ 存取機
★ 軌道式搬運車
關鍵字(英) ★ Dispatching Control
★ Simulation Technique
★ Machine Layout Problem
★ TFT-LCD Bay
★ Rail Guided Vehicle
★ Stacker Crane
★ In-Line Stocker
論文目次 中文摘要................................................................................................i
Abstract................................................................................................ii
誌謝....................................................................................................iv
Table of Contents.......................................................................................v
List of Figures.........................................................................................vii
List of Tables..........................................................................................ix
Chapter 1: Introduction.................................................................................1
1.1 Background..........................................................................................1
1.2 Objectives..........................................................................................3
1.3 Thesis organization.................................................................................4
Chapter 2: Literature Review............................................................................6
2.1 The layout problem review...........................................................................6
2.2 The dispatching control problem review..............................................................8
Chapter 3: Machine Layout within a TFT-LCD Bay with a Multiple-Stacker Crane In-Line Stocker............11
3.1 Introduction........................................................................................11
3.2 The problem objectives and assumptions..............................................................12
3.3 The proposed layout method..........................................................................12
3.3.1 Initial design module.............................................................................13
3.3.2 Improvement module................................................................................18
3.4 Example problem and comparison......................................................................26
3.4.1 Solving the example problem with the proposed method..............................................26
3.4.2 Comparison and validation.........................................................................28
Chapter 4: The Machine Layout within a TFT-LCD Bay with an In-Line Stocker System and an RGV System.....32
4.1 Introduction........................................................................................32
4.2 The problem objectives and assumptions..............................................................32
4.3 The proposed layout method..........................................................................33
4.3.1 Phase I-initial machine arrangement..............................................................34
4.3.2 Phase II-stocker zone design.....................................................................37
4.3.3 Phase II-workload balance analysis...............................................................44
4.4 An experimental problem.............................................................................44
4.4.1 Determination of the initial flow-line of machines................................................44
4.4.2 Stocker zone formation............................................................................46
4.4.3 Evaluation of workload-balance between zones......................................................47
4.4.4 Comparison and simulation validation..............................................................48
Chapter 5: A Study on the Control Problem of Stacker Cranes in a TFT-LCD Plant..........................51
5.1 Introduction........................................................................................51
5.2 The Problem objectives and assumptions..............................................................51
5.3 The proposed dispatching control method.............................................................52
5.3.1 The proposed task-determination dispatching control problem.......................................53
5.3.2 The proposed port-clearing dispatching control problem............................................54
5.3.3 The proposed cassette-delivery dispatching control problem........................................59
5.4 Simulation experiments..............................................................................65
5.4.1 Throughput (THP) performance......................................................................67
5.4.2 Mean flow time of parts (MFTP) performance........................................................72
5.4.3 Mean tardiness of parts (MTP) performance.........................................................76
Chapter 6: Conclusion and Future Research...............................................................80
6.1 Summary and conclusions.............................................................................80
6.2 Future research.....................................................................................81
Bibliographies..........................................................................................83
參考文獻 1. Agnetis, A., and Signoretti, F., 1992, “Part routing in flexible assembly systems-workload balancing and minimization of transfer costs,” Lecture Notes in Control and Information Sciences, vol. 180, pp. 855-864.
2. Agrawal, G. K., and Heragu, S. S., 2006, “A Survey of automated material handling systems in 300-mm semiconductor fabs,” IEEE Transactions on Semiconductor Manufacturing, vol. 19, no. 1, pp. 112-120.
3. Aneke, N. A. G., and Carrie, A. S., 1986, “A design technique for the layout of multi-product flowlines,” International Journal of Production Research, vol. 24, no. 3, pp. 471-481.
4. Angra, S., Sehgal, R., and Noori, Z. S., 2008, “Cellular manufacturing - A time-based analysis to the layout problem,” International Journal of Production Economics, vol. 112, no. 1, pp. 427-438.
5. Azadivar, F., 1986, “Maximization of the throughput of a computerized automated warehousing system under system constraints,” International Journal of Production Research, vol. 24, no. 3, pp. 551-566.
6. Banerjee, P., and Zhou, Y., 1995, “Facility layout design optimization with single loop material flow path configuration,” International Journal of Production Research, vol. 33, no. 1, pp. 183-204.
7. Bilge, U., and Tanchoco, J. M. A., 1997, “AGV systems with multi-load carriers: Basic issues and potential benefits,” Journal of Manufacturing Systems, vol. 16, vo. 3, pp. 159-171.
8. Bock, S., and Hoberg, K., 2007, “Detailed layout planning for irregularly-shaped machines with transportation path design,” European Journal of Operational Research, vol. 177, no. 2, pp. 693-718.
9. Bozer, Y. A., and Yen, C. K., 1996, “Intellignet dispatching rules for trip-based material handling systems,” Journal of Manufacturing Systems, vol. 15, no. 4, pp. 226-239.
10. Braglia, M., 1997, “Heuristics for single-row layout problems in flexible manufacturing systems,” Production Planning and Control, vol. 8, no. 6, pp. 558-567.
11. Carrie, A. S., 1975, “Layout of multi-product line,” International Journal of Production Research, vol. 13, no. 6, pp. 451-557.
12. Chae, J. J., and Peters, B. A., 2006, “A simulated annealing algorithm based on a closed loop layout for facility layout design in flexible manufacturing systems,” International Journal of Production Research, vol. 44, no. 13, pp. 2561-2572.
13. Chen, D. S., Wang, Q., and Chen, H. C., 2001, “Linear sequencing for machine layouts by a modified simulated annealing,” International Journal of Production Research, vol. 39, no. 8, pp. 1721-1732.
14. Display Search, 2010, Quarterly Large-Area TFT LCD Shipment Report, http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/100811_q2_large_area_tft_lcd_shipments_reach_record_high_of_170_m.asp.
15. Dym, C. L., and Little, P., 2000, Engineering Design-A Project-Based Introduction (New York: Wiley).
16. Egbelu, P. J., 1987a, “Pull versus push strategy for automated guided vehicle load movement in a batch manufacturing system,” Journal of Manufacturing Systems, vol. 6, pp. 359-374.
17. Egbelu, P. J., 1987b, “The use of non-simulation approaches in estimating vehicle requirements in an automated guided vehicle based transport system,” Material Flow, vol. 4, pp. 17-32.
18. Egbelu, P. J., 1991, “Framework for dynamic positioning of storage / retrieval machines in an automated storage / retrieval system,” International Journal of Production Research, vol. 29, no. 1, pp. 17-37.
19. Egbelu, P. J., and Tanchoco, J. M. A., 1984, “Characterization of automatic guided vehicle dispatching rules,” International Journal of Production Research, vol. 22, no. 3, pp. 359-374.
20. Egbelu, P. J., and Wu, C.-T., 1993, “A comparison of dwell point rules in an automated storage / retrieval system,” International Journal of Production Research, vol. 31, no. 11, pp. 2515-2530.
21. Elsayed, E. A., and Stern, R. G., 1983, “Comtuterized algorithms for order processing in automated warehousing systems,” International Journal of Production Research, vol. 21, no. 4, pp. 579 – 586.
22. Eynan, A., and Rosenblatt, M. J., 1993, “An interleaving policy in automated storage / retrieval systems,” International Journal of Production Research, vol. 31, no. 1, pp. 1-18.
23. Gung, R. R., and Steudel, H. J., 1999, “A workload balancing model for determining set-up time and batch size reductions in GT flow line workcells,” International Journal of Production Research, vol. 37, no. 4, pp. 769-791.
24. Ham, H. S., 1996, “Job route selection model for workload balancing between workstations in flexible flow line,” Production Planning & Control, vol. 7, no. 4, pp. 430-438.
25. Han, M.-H., McGinnis, L. F., Shieh, J. S., and White, J. A., 1987, “On sequencing retrievals in an automated storage / retrieval system,” IIE Transactions, vol. 19, no. 1, pp. 56-66.
26. Heragu, S. S., and Kusiak, A., 1988, “Machine layout problem in flexible manufacturing systems,” Operational Research, vol. 36, no. 2, pp. 258-268.
27. Heragu, S. S., and Kusiak, A., 1990, “Machine layout: an optimization and knowledge-based approach,” International Journal of Production Research, vol. 28, no. 4, pp. 615-635.
28. Hillier, M. S., and Brandeau, M. L., 2001, “Cost minimization and workload balancing in printed circuit board assembly,” IIE Transactions, vol. 33, no. 7, pp. 547-557.
29. Ho, Y. C., 2000, “A dynamic-zone strategy for vehicle-collision prevention and load balancing in an AGV system with a single-loop guide path,” Computers in Industry, vol. 42, no. 2-3, pp. 159-176.
30. Ho, Y. C., and Chien, S. H., 2006, “A Simulation Study on the Performance of Task-Determination Rules and Delivery-Dispatching Rules for Multiple-Load AGVs,” International Journal of Production Research, vol. 44, no. 20, pp. 4193-4222.
31. Ho, Y. C., and Hsieh, P. H., 2004, “A machine-to-loop assignment and layout design methodology for tandem AGV systems with multiple-load vehicles,” International Journal of Production Research, vol. 42, no. 4, pp. 801-832.
32. Ho, Y. C., and Hsieh, H. W., 2005, “A part-and-tool assignment method for the workload-balance between machines and the minimisation of tool-shortage occurrences in an FMS,” International Journal of Production Research, vol. 43, no. 9, pp. 1831-1860.
33. Ho, Y. C., and Lee C. S., 2004, “A no-cost zone and iso-cost line based control method for an AS/RS with a multiple-load Stacker crane,” Journal of the Chinese Institute of Industrial Engineers, vol. 21, no. 1, pp. 1-17.
34. Ho, Y. C., Lee, C. C., and Moodie, C. L., 1993, “Two sequence-pattern, matching-based, flow analysis methods for multi-flowlines design,” International Journal of Production Research, vol. 31, no. 7, pp. 1557-1578.
35. Ho, Y. C., and Liao, T. W., 2009, “Zone design and control for vehicle collision prevention and load balancing in a zone control AGV system,” Computer and Industrial Engineering, vol. 56, no. 1, pp. 417-432.
36. Ho, Y. C., and Liao, T. W., 2011, “The layout design of semiconductor bays with spine and perimeter inter-bay guide path loops,” International Journal of Production Research, DOI:10.1080/00207543.2010.543936.
37. Ho, Y. C., and Liu, C. F., 2005, “A design methodology for converting a regular warehouse into a zone-picking warehouse,” Journal of the Chinese Institute of Industrial Engineers, vol. 22, no. 4, pp. 332-345.
38. Ho, Y. C., and Liu, H. C., 2006, “A Simulation Study on the Performance of Pickup-Dispatching Rules for Multiple-Load AGVs,” Computers and Industrial Engineering, vol. 51, no. 3, pp. 445-463.
39. Ho, Y. C., and Liu, H. C., 2009, “The performance of load-selection rules and pickup-dispatching rules for multiple-load AGVs,” Journal of Manufacturing Systems, vol. 28, vo. 1, pp. 1-10.
40. Ho, Y. C., and Moodie, C. L., 1998, “Machine layout with a linear single-row flow path in an automated manufacturing system,” Journal of Manufacturing Systems, vol. 17, no. 1, pp. 1-22.
41. Ho, Y. C., and Moodie, C. L., 2000, “A hybrid approach for concurrent layout design of cells and their paths in a tree configuration,” International Journal of Production Research, vol. 83, no. 4, pp. 895-928.
42. Hollier, R. H., 1963, “The layout of multi-product lines,” International Journal of Production Research, vol. 2, no. 1, pp. 47-57.
43. Hu, Y.-H., Huang, S. Y., Chen, C., Hsu, W.-J., Toh, A. C., Loh, C. K., and Song, T., 2005, “Travel time analysis of a new automated storage and retrieval system,” Computers & Operations Research, vol. 32, no. 6, pp. 1515-1544.
44. Huang, H. C., Lee, C. L., and Xu, Z. Y., 2006, “The workload balancing problem at aircargo terminals,” OR Spectrum, vol. 28, no. 4, pp. 705-727.
45. Hwang, H., and Lim, J. M., 1993, “Deriving an optimal dwell point of the storage / retrieval machine in an automated storage / retrieval system,” International Journal of Production Research, vol. 31, no. 11, pp. 2591-2602.
46. ILOG CPLEX 7.1, 2001, ILOG CPLEX 7.1 User’s Manual, Gentilly, France: ILOG SA.
47. Kelton, W. D., Sadowski, R. P., and Sturrock, D. T., Simulation with arena. Boston: McGraw-Hill, 2003.
48. Kesen, S. E., and Baykoca, O. F., 2007, “Simulation of automated guided vehicle (AGV) systems based on just-in-time (JIT) philosophy in a job-shop environment,” Simulation Modelling Practice and Theory, vol. 15, no. 3, pp. 272-284.
49. Kim, C. W., Tanchoco, J. M. A., and Koo, P. H., 1999, “AGV dispatching based on workload balancing,” International Journal of Production Research, vol. 37, no. 17, pp. 4053-4066.
50. Kirckpatrick, S., Gelatt, Jr., C. D. & Vecchi, M. P., 1983, “Optimization by simulated annealing,” Science, vol. 220, no. 4589, pp. 671-680.
51. Koo, P.-H., Jang, J., and Suh J., 2005, “Vehicle dispatching for highly loaded semiconductor production considering bottleneck machines first,” International Journal of Flexible Manufacturing Systems, vol. 17, no. 1, pp. 23-38.
52. Kouvelis, P., Chiang, W.C., and Fitzsimmons, J., 1992, “Simulated annealing for machine layout problems in the presence of zoning constraints,” European Journal of Operational Research, vol. 57, no. 2, pp. 203-223.
53. Kouvelis, P., and Kim, M. W., 1992, “Unidirectional Loop Network Layout Problem in Automated Manufacturing Systems,” Operational Research, vol. 40, no. 3, pp. 533-550.
54. Langevin, A., Montreuil, B., and Riopel, D., 1994, “Spine layout design,” International Journal of Production Research, vol. 32, no. 2, pp. 429-442.
55. Law, A. M., and Kelton, W. D., 2000, Simulation modeling and analysis. Boston: McGraw-Hill.
56. Lee, S. D., and Chen, Y. L., 1997, “A weighted approach for cellular manufacturing design: Minimizing intercell movement and balancing workload among duplicated machines,” International Journal of Production Research, vol. 35, no. 4, pp. 1125-1146.
57. Lee, H. F., and Schaefer, S. K., 1996, “Retrieval sequencing for unit-load automated storage and retrieval systems with multiple openings,” International Journal of Production Research, vol. 34, no. 10, pp. 2963-2966.
58. Lee, J., and Maneesavet, R., 1999, “Dispatching rail-guided vehicles and scheduling jobs in a flexible manufacturing system,” International Journal of Production Research, vol. 37, no. 1, pp. 111-123.
59. Lee, J., and Srisawat, T., 2006, “Effect of manufacturing system constructs on pick-up and drop-off strategies of multiple-load AGVs,” International Journal of Production Research, vol. 44, no. 4, pp. 653-673.
60. Lee, J., Tangjarukij, M., and Zhu, Z., 1996, “Load selection of automated guided vehicles in flexible manufacturing systems,” International Journal of Production Research, vol. 34, no. 12, pp. 3388-3400.
61. Linn, R. J., and Wysk, R. A., 1987, “An analysis of control strategies for an automated storage / retrival system,” INFOR, vol. 25, no. 1, pp. 66-83.
62. Metropolis, N. A. W., Rosenbluth, M. N., Rosenbluth, A. H. M. H. Teller, and E, Teller, 1953, “Equation of state calculation by fast computing machines,” The Journal of Chemical Physics, vol. 21, pp. 1087-1092.
63. Min, H-S., and Yih, Y., 2003, “Selection of dispatching rules on multiple dispatching decision points in real-time scheduling of a semiconductor wafer fabrication system,” International Journal of Production Research, vol. 41, no. 16, pp. 3921-3941.
64. Ozden M., 1988, “A simulation study of multiple-load-carrying automated guided vehicles in a flexible manufacturing system,” International Journal of Production Research, vol. 26, no. 8, pp. 1353-1366.
65. Pahl, G., and Beitz, W., 1996, Engineering Design-A Systematic Approach (London: Springer-Verlag).
66. Ponnambalam, S. G., and Ramkumar, V., 2001, “A genetic algorithm for design of a single-row layout in automated manufacturing systems,” The International Journal of Advanced Manufacturing Technology, vol. 18, no. 8, pp. 512-519.
67. Potts, C. N., and Whitehead, J. D., 2001, “Workload balancing and loop layout in the design of a flexible manufacturing system,” European Journal of Operational Research, vol. 129, no. 2, pp. 326-336.
68. Rardin, R. L., 1998, Optimization in operations research, Upper Saddle River, NJ: Prentice-Hall.
69. Rezapour, S., Zanjirani-Farahani, R., and Miandoabchi, E., 2011, “A machine-to-loop assignment and layout design methodology for tandem AGV systems with single-load vehicles,” International Journal of Production Research, vol. 49, no. 12, pp. 3605-3633.
70. Rockwell Automation, Arena user’s guide. Milwaukee: Rockwell Softwarem, 2004.
71. Romesburg, H. C., 1984, Cluster Analysis for Researchers, Lifetime Learning Publications (Wadsworth Inc.), Belmont, CA.
72. Rouwenhorst, B., Reuter, B., Stockrahm, V., Houtum, G. J. van, Mantel, R. J., and Zijm, W. H. M., 2000, “Warehouse design and control: Framework and literature review,” European Journal of Operational Research, vol. 122, no. 3, pp. 515-533.
73. Sabuncuoglu, I., and Hommertzheim, D. L., 1992, “Dynamic dispatching algorithm for scheduling machines and automated guided vehicles in a flexible manufacturing system”, International Journal of Production Research, vol. 30, no. 5, pp. 1059-1079.
74. Sarker, B. R., 2003, “The effect of material flow and workload on the performance of machine location heuristics,” European Journal of Operational Research, vol. 148, no. 1, pp. 166-191. 
75. Shr, A. M. D., Liu, A., and Chen, P. P., 2006, “A heuristic load balancing scheduling method for dedicated machine constraint,” Lecture Notes in Computer Science, vol. 4031, pp. 750-759.
76. Solimanpur, M., and Jafari, A., 2008, “Optimal solution for the two-dimensional facility layout problem using a branch-and-bound algorithm,” Computer and Industrial Engineering, vol. 55, no. 3, pp. 606-619.
77. Solimanpur, M., and Kamran, M. A., 2010, “Solving facilities location problem in the presence of alternative processing routes using a genetic algorithm,” Computer and Industrial Engineering, vol. 59, no. 4, pp. 830-839.
78. Solimanpur, M., Vrat, P., and Shankar, R., 2005, “An ant algorithm for the single row layout problem in flexible manufacturing systems,” Computers & Operations Research, vol. 33, no. 3, pp. 583-598.
79. Su, Y. C., Hung, M. H., Cheng, F. T., and Chen, Y. T., 2006, “A processing quality prognostics scheme for plasma, sputtering in TFT-LCD manufacturing,” IEEE Transactions on Semiconductor Manufacturing, vol. 19, no. 2, pp. 183-194.
80. Sule, D. R., 1994, Manufacturing facilities: location, planning, and design. Boston: PWS-KENT Publishing Company.
81. Tazari, S., Muller-Hannemann, M., and Weihe, K., 2006, “Workload balancing in multi-stage production processes,” Lecture Notes in Computer Science, vol. 4007, pp. 49-60.
82. Wang, J.-Y., and Yih, Y., 1997, “Using neural networks to select a control strategy for automated storage and retrieval systems (AS/RS),” International Journal Computer Integrated Manufacturing, vol. 10, no. 6, pp. 487-495.
83. Wilson, J. M., 1992, “Approaches to machine load balancing in flexible manufacturing systems,” Journal of the Operational Research Society, vol. 43, no. 5 pp. 415-423.
84. Yang T. H., Peters B. A., and Tu, M., 2005, “Layout design for flexible manufacturing systems considering single-loop directional flow patterns,” European Journal of Operational Research, vol. 164, no. 2, pp. 440-455.
85. Yin, Y., and Yasuda, K., 2005, “Similarity coefficient methods applied to the cell formation problem: a comparative investigation,” Computer and Industrial Engineering, vol. 48, no. 3, pp. 471-189.
86. Young, R., 1998, “TFT LCDs increasing market share through technological innovation,” Semiconductor International, vol. 21, no. 5, pp. 97-100.
87. Young, J. J., Gi, H. C., and Sun, I. K., 2005, “Modeling and analysis of stocker system in semiconductor and LCD fab,” Semiconductor Manufacturing, IEEE International Symposium on 13-15 Sept. 2005, pp. 273-276.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2012-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明