博碩士論文 93521054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.138.101.219
姓名 蔡緒孝(Shu-Hsiao Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 邊射型漸耦合式於1.55μm波長之半導體光放大器與光檢測器單晶片整合
(Monolithically Integration of Edge Emission Evanescently Coupled Semiconductor Optical Amplifier and Photodetector at 1.55μm Wavelength)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對1.55μm波長邊射型漸耦合式半導體光放大器與光檢測器單晶片整合之製作與研究,利用半導體光放大器體積小、積體化佳之特性,在光通訊系統接收端模組中與光檢測器做單晶片整合,入射光訊號經由漸耦合式波導將光功率漸進的導入半導體光放大器,讓光訊號直接做光對光的放大,再經由光性設計與模擬過的光耦合層,將放大後的光信號逐漸耦合至吸收層吸收。在相同製程下可提供半導體光放大器與光檢測器之整合元件與獨立元件。
利用與光檢測器整合之優勢,提出一簡易量測光放大增益之方法,省去一般雙邊耦合量測上光對準之不易與高的光功率損耗,或是其他量測方法需要鍍抗反射膜和開測量窗口等額外製程。我們直接利用整何元件積體化後之優勢,檢視光檢測器之光電流變化量,即可計算出半導體光放大器之增益。本論文為求量產之考量,在製程與量測上皆以降低成本作為考量目標。
我們提供最大光放大增益8.8dB之半導體光放大器,採用伸張應變之多重量子井,可使得半導體光放大器對TE極化以及TM極化之增益差距只有極小之0.12dB,達到對極化非敏感的要求。而在光檢測器的表現上,不論是整合元件或是單一光檢測器在頻寬的表現上皆能超過40 GHz,符合SONET/SDH OC-768的規格。且皆不受偏壓及輸入光功率不同而影響頻寬之表現,達到電荷補償式單載子傳輸光檢測器之設計目標。
摘要(英) This thesis studied the monolithically integration of edge emission evanescently coupled semiconductor optical amplifier and photodetector at 1.55μm wavelength. Due to the smaller size and better integration with other optic electrical device of SOA, it can be integrated in receiver module of optical fiber communication system. Input optical signal passed through the fiber guide and MQW, it can be amplified by stimulation emission of SOA. After signal amplified we design the coupling layer to couple the signal to the absorption layer of photo detector. We can provide the integrated device and the individual device in the same fabrication process.
We can take advantage of the integrated device to provide a simple gain measurement of SOA. It can reduce the optical loss and fiber alignment of conventional measurement or additional process of other ASE gain measurement. We can monitor the difference of photocurrent with different injection current of SOA. This thesis provided the low cost fabrication and measurement system.
We provide the maximum optical gain 8.8dB and the difference of TE mode and TM mode only 0.12dB. It can achieve the polarization insensitive. The performance of detector bandwidth all can achieve the 40GHz and conform to SONET/SDH OC-768.
關鍵字(中) ★ 光檢測器
★ 半導體光放大器
★ 單晶片整合
關鍵字(英) ★ photodetector
★ semicondoctor optical amplifier
★ monolithically integration
論文目次 第一章 前言 1
1-1光纖通訊之發展趨勢 1
1-2 光檢測器發展與應用 4
1-3 光放大器發展與應用 6
1-4 研究動機與方向 8
1-5 論文架構 9
第二章元件理論與設計原理 10
2-1半導體光放大器設計原理 10
2-1-1半導體光放大器工作原理 10
2-1-2增益與頻寬 12
2-1-3飽和增益 15
2-1-4雜訊 16
2-2耦合式光檢測器設計原理 18
2-2-1傳統P-I-N光檢測器工作原理 18
2-2-2單載子傳輸光檢測器工作原理 19
2-2-3電荷補償式單載子光檢測器工作原理 22
2-2-4光檢測器之幾何結構 24
第三章 元件模擬與製作 27
3-1 IN1-XGAXASYP1-Y/IN1-XGAXASYP1-Y多重量子井設計 27
3-2元件幾何結構設計 36
3-3元件光性模擬 37
3-4元件製作 42
3-4-1製程步驟 42
3-4-2製作考量 48
第四章 元件量測與分析 50
4-1量測系統架構 50
4-1-1 SOA增益量測簡介 50
4-1-2 光檢測器頻寬量測簡介 53
4-2量測結果 56
4-2-1光放大器與光檢測器整合之量測結果 56
4-2-2光檢測器量測結果 60
4-3量測結果分析與比較 62
第五章 結論 64
參考文獻 66
參考文獻 [1] John Gowar, “Optical Communication Systems”, Prentice Hall, 1993
[2] Gerd Keiser, “Optical Fiber Communications”, McGRAW Hill, 2000
[3] Djafar K. Mynbaev, Lowell L. Scheiner, “Fiber-Optic Communications Technology”, Prentice Hall, 2001
[4] DWDM Performance and Conformance Testing Primer”, ApplicationNote of Tektronix, 2001
[5] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp.709-727, Jul./Aug. 2004.
[6] Hiroshi Ito, Tadao Ishibashi “Ultrafast uni-traveling carrier photodiode,” NTT Photonics Laboratory, Device Research Conference, 2000. Conference Digest. 58th DRC 19-21 June 2000 Page(s):165 – 168
[7] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
[8] S. M. Sze, “Physics of Semiconductor devices,” John Wiley & Sons, 2nd Edition
[9] Das, M.B., “Optoelectronic detectors and receivers: speed and sensitivity limits"Optoelectronic and Microelectronic Materials Devices, 1998. Proceedings. 1998 Conference on14-16 Dec. 1998 Page(s):15 – 22
[10] Donald A. Neamen, “Semiconductor physics Principle,"second edition
[11] Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, pp. 709–727, July/August 2004.
[12] T. Saitoh and T. Mukai, “Recent progress in semiconductor amplifier,” IEEE J. Lightwave Technology, vol.6, no.1pp.1656-1664, 1988.
[13] N. A. Olsson, “Semiconductor optical amplifiers,” Proceedings of the IEEE, vol.80, no.3, pp.375-382, Mar. 1992.
[14] B. Mason, L. L. Buhl, “40 Gbs photonic integrated receiver with -17 dBm sensitivity,” in Tech. Dig. Opt. Fiber Commun. Conf., Anaheim, CA, 2002, Postdeadline Paper FB10.
[15] D. Wake, “A 1550-nm millimeter-wave photodetector with a bandwidth-efficiency product of 2.4 THz,” J. Lightwave Technol., vol. 10, pp. 908–912, July 1992.
[16] F. Xia, J. Wei, V. Menon, and S. R. Forrest, “Monolithic integration of a semiconductor optical amplifier and a high bandwidth p-i-n photodiode using asymmetric twin-waveguide technology,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 3,pp.452-454, 2003
[17] G. P. Agrawal, N. K. Dutta, Long-Wavelength SemiconductorLasers, New York: Van Nostrand Reinhold, 1986. Ch3.
[18] 葉東昆, “1.55um寬頻半導體光放大器研製與分析,” 碩士論文, 國立中山大學, 民國93年。
[19] J. Yu, P. Jeppesen, “Improvement of cascaded semiconductor optical amplifier gates by using holding light injection,” IEEE J. Lightwave Technology, vol.19, no.5, pp.614-623, 2001.
[20] M. J. O’Mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” IEEE J. Lightwave Technology, vol.6, no. 4, pp. 531-543, Apr. 1988.
[21] G. Eisenstein and L. W. Stulz, “High quality Antireflection Coatings on Laser Facets by Sputtered Silicon Nitride,” Applied Optics, vol.23, no.1, pp.161-164, 1984.
[22] G. Eisenstein and L. W. Stulz, “Antireflection Coatings on Semiconductor Laser Facets using Sputtered Lead Silicate Glass,” Journal of Lightwave Technology, vol. LT -4, no.9, pp. 1373-1375, 1986.
[23] Y. Muramoto, and T. Ishibashi, “InP/InGaAs pin photodiode structure maximising bandwidth and efficiency,” Electron. Lett., vol. 39, pp.1749- 1750, NOV. 2003.
[24] L. A. Coldren and S. W. Corzine, “Diode lasers and photonic integrated circuit,” John Wiley & Sons, Inc., New York, pp.527-536, 1995.
[25] M. Ilegems, “InP-based lattice-matched heterostructures,” in Properties of lattice-matched and strained Indium Gallium Arsenide, edited by Pallab Bhattacharya, INSPEC, IEE, p.19, 1993.
[26] A. ichii, Y. Tsou, and E. Garmire, “An empirical rule for band offsets between III-V alloy compounds,” J. Appl. Phys., vol. 74,pp.2112-2113, 1993.
[27] J. R. Flemish, H. Shen, K. A. Jones, M. Dutta, and V. S. Ban, “Determination of the composition of strained InGaAsP layers on InP substrates using photoreflectance and double-crystal X-ray diffractometry,” J. Appl. Phys., vol. 70,pp.2152-2155, 1991.
[28] B. W. Hakki, and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys., Vol. 46, No. 3, pp.1299-1306, 1975.
[29] C. H. Herny, R. A. Logan, and F. R. Merritt, ”Measurement of gain and absorption in AlGaAs buried heterostructure lasers,” J. Appl. Phys., Vol. 51, No. 3, p3042, 1980.
[30] A. Oster, G. Erbert, and H. Wenzel, “Gain spectra measurements by variable stripe length method with current injection,” Electron. Lett., Vol. 33, No. 4, p864, 1997.
[31] Katsuaki Magari, and Yasuhiro Suzuki, “Novel gain measurement method without optical fiber alignment in a semiconductor optical amplifier,” IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 16, Nl. 5, 2004.
指導教授 詹益仁(Yi-Jen Chan) 審核日期 2006-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明