博碩士論文 93521081 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.191.200.47
姓名 洪梓健(Tzu-Jien Hung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以磷化銦為基材橫向接面紅外光白光二極體
(InP Based Transverse Junction Light-Emitting-Diodes for White-LightGeneration at Infrared Wavelengths)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 吾人製作出橫向接面紅外光白光二極體,其橫向接面結構由鋅擴散來達成,發光波長由主動層之量子井設計決定,由於橫向P-N接面使得主動層中,所有量子井發光功率可以有相近的能量,以製作出每一個波長強度相同,及極寬的3db頻寬~580nm,吾人由最佳條件550℃-40分鐘鋅擴散,完成一元件且得到光譜半高寬為580nm在驅動電流為60mA,波長從1042nm ~1622nm的發光二極體。
摘要(英) We demonstrate a novel structure of light-emitting-diodes (LEDs) at infrared wavelengths for broadening their optical bandwidth performance. By incorporating the transverse p-n junction with multiple-quantum-wells (MQWs), which have different center wavelengths, the problems of non-uniform carrier distribution in the MQWs of traditional LEDs with vertical p-n junction can be totally eliminated. Tremendous wide 3-dB optical bandwidth (~580nm, 1042nm~1622nm) under 60mA injected current has been demonstrated.
關鍵字(中) ★ 橫向接面二極體
★ 鋅擴散
★ 多重量子井
關鍵字(英) ★ MQW
★ zinc diffision
★ Transverse Junction diode
論文目次 目錄
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . Ⅰ
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . Ⅱ
致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . Ⅲ
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅳ
圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . .. Ⅵ
表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . Ⅷ
第一章、 簡介. . . . . . . . . . . . . . . . . . . . . . . . .1
? 1.1寬頻光源應用於醫學方面-光學同調斷層掃描(Optical Coherent Tomography ,OCT) . . . . . . . . . . . . . . . . .3
? 1.2寬頻光源應用於光纖通訊-半導體光放大器(Semiconductor optical amplifier SOA) . . . . . . . . . . . . . . . . . .6
第二章、理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
? 2.1使用橫向接面二極體的目的. . . . . . . . . . . . . . . . .10
? 2.2擴散理論(substitution & interstitial mechanism) . . . . . .15
? 2.3量子井設計. . . . . . . . . . . . . . . . . . . . .16
第三章、元件製程. . . . . . . . . . . . . . . . . . . . . .21
? 3.1 元件製作概說. . . . . . . . . . . . . . . . . . . .21
? 3.2 製作程序. . . . . . . . . . . . . . . . . . . . . . . . . .24
第四章、量測結果與分析. . . . . . . . . . . . . . . . . . . .31
? 4.1前導性實驗結果. . . . . . . . . . . . . . . . . . . .32
? 4.2不同擴散溫度下的元件特性. . . . . . . . . . . . . . 36
? 4.3不同擴散時間的元件特性. . . . . . . . . . . . . . . . . . .41
第五章、 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
附錄A 量子井模擬程式. . . . . . . . . . . . . . . . . . . .53
著作列表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
參考文獻 [1] Jean-Jacques Bernard and Monique Renaud, “Semiconductor optical amplifiers,” spie’s oemagazine, September, 36-38,(2001).
[2] K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A Broad-Band MQW Semiconductor Optical Amplifier With High Saturation Output Power and Low Noise Figure” IEEE Photon. Technol. Lett., 17, 974-976, 2005.
[3] T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An Ultrawide-Band Semiconductor Optical Amplifier Having an Extremely High Penalty-Free Output Power of 23dBm Achieved With Quantum Dots,” IEEE Photon. Technol. Lett., 17, 1614-1616, 2005.
[4] C.-F. Lin, Y.-S. Su, C.-H. Wu, and G. S. Shmavonyan, “Influence of Separate Confinement Heterostructure on Emission Bandwidth of InGaAsP Superluminescent Diodes/Semiconductor Optical Amplifiers With Nonidentical Multiple Quantum Wells,” IEEE Photon. Tech. Lett., 16, 1441-1443, 2004.
[5] Joseph M. Schmitt ,”Optical Coherence Tomography (OCT): A Review” IEEE Journal of Selected Topics in Quantum Electronics, 5,1205-1215,1999
[6] Y. J. Yang, Y. C. Lo, G. S. Lee, K. Y. Hsieh, and R. M. Kolbas, “Transverse junction stripe laser with a lateral heterobarrier by diffusion enhanced alloy disordering,” Appl. Phys. Lett., 49, 835-837, 1986.
[7] D Huang, EA Swanson, CP Lin, JS Schuman, WG Stinson, W Chang, MR Hee, T Flotte, K Gregory, CA Puliafito, and J G. Fujimoto” Optical coherence tomography” Science 22 November 1178-1181, 1991
[8] Drexler, W.; Morgner, U.; Kartner, F.X.; Pitris, C.; Boppart, S.A.; Li, X.D.; Ippen, E.P.; Fujimoto, J.G.,” In vivo ultrahigh-resolution optical coherence tomography”, Optics Letters, vol.24, no.17, 1221-1223,1999.
[9] Michael H. Frosz,”Optical Coherence Tomography: System Design and Noise Analysis” Risø National Laboratory, Roskilde, Denmark July 2001
[10] E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett., vol. 17, 151-153, 1992.
[11] Wang, Yimin; Nelson, J. Stuart; Chen, Zhongping; Reiser, Bibiana Jin; Chuck, Roy S.; Windeler, Robert S.” Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express, vol.11, no.12, 1411-1417, 2003,
[12] Connelly, Michael J.” Semiconductor Optical Amplifiers” London Kluwer Academic Publishers, 2002
[13] W. K. Burns. C.-L. Chen, and R. P. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol., vol. LT-1, 98-105, 1983.
[14] E. H. Lee, Bang, Y. C. Bang, J. K. Kang, Y. C. Keh, D. J. Shin, J. S. Lee, Park, S. S. Park, I. Kim, J. K. Lee, Y. K. Oh, and D. H. Jang, “Unclooed C-Band Wide-Band Gain Lasers With 32-Channel Coverage and -20 -dBm ASE Injection for WDM-PON,” IEEE Photon. Technol. Lett., vol. 18,667-669, 2006.
[15] G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibers,” Electron. Lett., vol. 41, 795- 797, 2005.
[16] M. Higashihata, T. Nakamura, A. Takahashi, Y. Nakata, and T. Okada, “Broadband Light Source Based on Stimulated Raman Scattering in Silica Optical Fiber for Optical Coherence Tomography,” Jpn. J. Appl. Phys., vol. 43, 4195-4197, 2004.
[17] A. T. Semenov, V. R. Shidlovski, and S. A. Safin, “Wide spectrum single quantum well superluminescent diodes at 0.8?m with bent optical waveguide,” Electronics Letters., vol. 29, 854-857,1993.
[18] S. D. McDougal, O. P. Kowalski, J. H. Marsh, and J. S. Aitchison, “Broad Optical Bandwidth InGaAs-InAlGaAs Light-Emitting Diodes Fabricated Using a Laser Annealing Process,” IEEE Photon. Technol. Lett., vol.11,1557-1559, 1999.
[19] S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-Band Superluminescent Light-Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells,” IEEE Photon. Technol. Lett., vol. 18, 58- 60,2006.
[20] C.-F. Lin, B.-R. Wu, L.-W. Laih, and T.-T. Shih, “Sequence influence of nonidentical InGaAsP quantum wells on broadband characteristics of semiconductor optical amplifiers/superluminescent diodes,” Opt. Lett., vol. 26, 1099-1101, 2001.
[21] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, D. A. Thompson, and M. Davies, “Effect of barrier height on the uneven carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers,” IEEE Photon. Technol. Lett., vol. 10, 1380-1382, 1998.
[22] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, and D. A. Thompson, “Effect of barrier thickness on the carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers,” IEEE Photon. Technol. Lett., vol. 12, 134-136, 2000.
[23] B Tuck and A. Hooper “Diffusion profiles of zinc in indium phosphide”J. Phys. D: Appl. Phys. 8 ,1806-1821, 1975
[24] G.J. van Gurp, T. van Dongen, G.M. Fontijn, J.M. Jacobs and D.L.A. Tjaden “Interstitial and substitutional Zn in InP and InGaAsP” J. Appl. Phys.vol. 65, 553, 1989
[25] C-C. Daniel Wong and Richard H. Bube “Bulk and surface effects of heat treatment of p-type InP crystals” J. Appl. Phys., Vol. 55, 3804-3812 ,1984
[26] L. A. Coldren and S. W. Corzine “ Diode Lasers and Photonic Integrated Circuits,”John Wiley &Sons, INC ,535
[27] A. H. van Ommen “Examination of models for Zn diffusion in GaAs” J. Appl. Phys. ,Vol.54, 5055-5058 ,1983
[28] Jin-Wei Shi ,C.-H. Jiang K.-M. ,Chen J.-L. Yen ,and Ying-Jay Yang” Single-mode vertical-cavity surface-emitting laser with ring-shaped light-emitting aperture” Appl. Phys. Lett., Vol.87, 031109, 2005
[29] Jin-Wei Shi; J.-L. , Yen; C.-H. ,Jiang; Chen, K.-M.; Hung, T.-J.; Ying-Jay Yang” Vertical-cavity surface-emitting lasers (VCSELs) with high-power and single-spot far-field distributions at 850-nm wavelength by use of petal-shaped light-emitting apertures” IEEE Photon. Technol. Lett.,vol18,no.3 ,481-483 ,2006
[30] Suxiang He and Yanli Zhao” An experimental investigation of Zn diffusion into InP and InGaAs” Semicond. Sci. Technol. Vol.20 ,149-151 ,2005
[31] Pape, I.J.; Kam Wa, P.Li.; David, J.P.R.; Claxton, P.A.; Robson, P.N.; Sykes, D.;” Diffusion-induced disordering of Ga0.47In0.53As/InP multiple quantum wells with zinc” Electron. Lett.,Vol.24 , 910 – 911 ,1988
[32] F. Dildey, R. Treichler, M.-C. Amann, M. Schier, and G. Ebbinghaus,” Replacement of magnesium in InGaAs/InP heterostructures during zinc diffusion” Appl. Phys. Lett. ,55, 876-879, 1989
[33] Ilgu Yun and Kyung-Sook Hyun,” Zinc diffusion process investigation of InP-based test structures for high-speed avalanche photodiode fabrication”,Microelectronics Journal,vol.31 ,635-639, 2000
[34] S-Y Yang, J-B Yoo” Characteristics of Zn diffusion in planar and patterned InP substrate using Zn3P2 film and rapid thermal annealing process” Surface and Coatings Technology, Vol. 131, 66-69, 2000,
[35] H. Gebretsadik, K. Kamath, W.-D. Zhou, P. Bhattacharya ,C. Caneau and R. Bhat,” Lateral oxidation of InAlAs in InP-based heterostructures for long wavelength vertical cavity surface emitting laser applications,” Appl. Phys. Lett. ,Vol.72, 135-137, 1998
[36] Yoshihisa Yamamoto and Hiroshi Kanbe” Zn Diffusion in InxGa1-xAs with ZnAs2 Source” Jpn. J. Appl. Phys. ,Vol. 19, 121-128,1980
[37] Wei Yang; Gopinath, A.; Hibbs-Brenner, M.” Planar GaAs-AlGaAs MQW transverse junction ridge waveguide lasers using shallow zinc diffusion” IEEE Photon. Technol. Lett. Vol.7, 848 – 850, 1995
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2006-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明