參考文獻 |
[1] R. J. Howarth and B. Hilary,“ A analogical representation of space and time,”” Image Vis. Comput., vol. 10, no. 7, pp.467-478,1992.
[2] A. F. Bocick and A. D. Wilson, “A state-based technique to the representation and recognition of gesture”IEEE Trans. Pattern Anal. Machine Intell.,vol. 19 pp. 1325-1337,Dec, 1997
[3] A. D. Wilson, A. F. Bobick, and J. Cassell, “Temporal classification of natural gesture and application to video coding,: IEEE conf. computer vision pattern recognition ,1997, pp. 948-954
[4] F. Bashir. A. Khokhar, D. Schonfeld, “Automatic object trajectory-based motion recognition using Gaussian mixture models”, IEEE conf.Multimedia and Expo,2005
[5] N. Johnson and D. Hogg, “Learning the distribution of object trajectories for event recognition,”Image Vis. Comput.1996
[6] N. Sumpter and A. Bulpitt, ”Learning spatio-temporal patterns for predicting object behavior,” Image Vis. Comput.,2000
[7] W. M. Hu, D. Xie, and T. N. Tan, “A hierarchical self-organizing approach for learning the patterns of motion trajectories,” IEEE Trans.on neural networks,2004
[8] J. Owsens and A. Huter, “Application of the self-organizing map to trajectory classication,” in Proc. IEEE Int. Workshop Visual Surveillance, 2000
[9] C. Stauffer and W. Grimson, “Adaptive background mixture models for real-time tracking”in Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, 1999, pp. 246-252.
[10] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: principles and practice of background maintenance,”in Proc. Int. conf. Computer Vision, 1999,pp. 255-261.
[11] I. Haritaoglu, D. Harwood, and L. S. Davis,“ W4 :Real time surveillance of people and their activities,”IEEE Trans. Pattern Anal. Machine Intell., vol.22, pp. 809-830, Aug. 2000
[12] S. Mckenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler,”Tracking groups of people,” Computer Vision, Image Understanding, vol. 80, no. 1 pp. 42-56,2000
[13] R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt and L. Wixson, “A system for video surveillance and monitoring,” Tech. Rep., The Robotics Institute, Carnegie Mellon University, 2000. CMU-RI-TR-00-12.
[14] M. Massey and W. Bender, “Salient stills: Process and practice”, IBM Systems Journal, vol.35, NO. 4, 1996,pp.557-573
[15] T. Cormen and al. Introduction to Algorithm. Second Edition, The MIT Press, 2001
[16] W. Hu,D. Xie, Tieniu, and S. Maybank, “Learning Activity Patterns Using Fuzzy Self-Organizing Neural Network”, IEEE Trans. On Systems Man and Cybernetics, 2004
[17] J. S. Zhang and T. W. Leung, “Improved Possibilistic C-Means Clustering Algorithms”, IEEE Trans. On Fuzzy System, 2004
[18] Krishnapuram R, Keller JM. “A possibilistic approach to clustering”, IEEE Trans. On Fuzzy Systems, 1996
[19] A. Prati and al. “Detecting moving shadows : algorithms and evaluation” IEEE trans. On Pattern Analysis and Machine Intelligence, 2003
[20] N . Herodotou, K.N. Olataniotis and A.N. Venetsanopoulos, “ A color Segmentation Scheme for Object-Based Video coding”, IEEE symp Advances in Digital Filtering and signal Processing,1998
[21] P. Kumar and al. “A comparative study of different color spaces for foreground and shadow detection for traffic monitoring system”, Proc. Of The IEEE 5th Inter. Conference on Intelligent Transportation Systems, 2002
[22] A. Senior “Tracking people with probabilistic appearance. Models” In IEEE Int. Workshop on PETS, pp. 48–55, June. 2002.
[23] N. R. Pal, K. Pal, J. M. Keller, and James C. Bezdek, “A possibilistic Fuzzy c-Means Coustering Algorrithm”IEEE Trans. On Fuzzy Systems. 2005
[24] M. Dahmane and J. Meunier “Real-Time Video Surveillance with Self-Organizing Maps”Proc. Of the Second Canadian Conference on Computer and Rovot Vision ,2005
[25] 蘇木春, 張孝德, “機器學習:類神經網路、模糊系統以及基因演算法則”, 全華科技圖書股份有限公司, 2003. |