博碩士論文 93522034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.145.63.131
姓名 林政儀(Cheng-Yi Lin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用模糊自我組織類神經網路作即時視訊監控系統
(Real-time Video Surveillance Using Fuzzy Self-Organizing Neural Network)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 一個以膚色為基礎之互補人臉偵測策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 建立一套以電腦視覺為基礎的智慧型監控系統,在較少的監控人員下,讓系統自動地對攝影機所擷取到的影像進行分析,以減少人力和降低異常事件發生的傷害程度。
為了使監控系統具有判斷異常的功能,某些論文的方法是在特定的場景之中定義正常或異常的行為,而此行為並不適用於其它場景,因此必須根據各場景重新定義其行為特徵,因此本論文希望藉由場景中的物體,分析其正常的行為特徵,以此訓練完的結果作為異常判斷的準則。本論文提出一套異常行為的偵測系統,利用軌跡的特徵,來判斷進入場景中的物體是否行為異常,首先利用histogram的方法建立背景影像並使用HSV中的亮度資訊偵測是否有前景物後,將非前景物的陰影區域加以去除,並利用bounding box distance measure的方法來追蹤此前景物,接著將追蹤時所得到的軌跡資訊用正規化的vector來表示,輸入結合FSOM與改良式PCM的非監督式演算法作訓練後,以此訓練完的結果來判斷後續物體是否行為異常。
實驗結果證明背景模組和訓練軌跡的非監督式演算法,可有效地處理光線變化和訓練軌跡特徵,而此訓練的結果可正確且快速地偵測異常事件。
摘要(英) The developing of a computer-based monitoring system is an effective approach to monitor the space with less man power. An intelligent program could provide not only the recording function but also the prediction of abnormal activities. Trajectory feature was proven to be an effective feature for detecting the abnormal activities. However, the moving trajectories of objects should be pre-defined in traditional approaches. Since the monitoring scenes were varied widely, pre-defined trajectories are not available for all scenes. In this thesis, the video data with normal activities were collected and segmented to train an unsupervised learning model of normal behaviors.
In this thesis, a fuzzy self-organized map (SOM) is built to detect the abnormal activities using the trajectory features. First of all, moving objects are detected and tracked in the histogram-based background subtraction, shadow removal, and labeling steps. The trajectory features of moving objects were extracted and represented as a normalized feature vector. The activity patterns are thus constructed using an unsupervised learning algorithm. Unlike the existing learning method, the proposed method combines the FSOM and the modified possibility c-means clustering algorithm. The parameters of SOM were replaced with the membership functions. They are repeatedly adjusted to obtain the desired output by the training samples. After completing the learning process, a normalized trajectory vector is classified to verify its validity.
Experimental results are illustrated to demonstrate the effectiveness and efficiency of the proposed approach. The abnormal activities can be detected in a real-time video surveillance system. Finally, conclusions and future works are given.
關鍵字(中) ★ 行為預測
★ 軌跡訓練
★ 模糊化自我組織類神經網路
★ 監控系統
★ 異常偵測
關鍵字(英) ★ training trajectory
★ fuzzy som
★ abnormal event detection
★ video surveillance
★ activity prediction
論文目次 Abstract i
摘要 ii
誌謝 iii
目錄 iv
附圖目錄 vi
附表目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 相關研究 2
1.3 系統流程 5
1.4 論文架構 7
第二章 背景模組與追蹤 8
2.1 背景模組 8
2.1.1 背景建立 10
2.1.2 背景更新 11
2.2 前景物偵測 13
2.3陰影去除 14
2.4前景物追蹤 18
2.4.1 區塊對應 19
第三章 異常偵測模組 24
3.1特徵擷取 24
3.1.1特徵向量正規化 25
3.2資料訓練 26
3.2.1 Self-organizing feature map 26
3.2.2 fuzzy self-organizing neural network 30
3.2.3 fuzzy self-organizing neural network algorithm 35
3.2.4 特徵向量長度調整 37
3.3 異常偵測 38
3.3.1 異常閥值設定 38
3.4 軌跡預測 39
第四章 實驗結果與討論 40
4.1 背景模組實驗結果 40
4.1.1 背景更新 41
4.2 陰影去除實驗結果 43
4.3 追蹤實驗結果 44
4.4 異常偵測與軌跡預測實驗結果 45
第五章 結論與未來工作 50
5.1 結論 50
5.2 未來工作 51
參考文獻 52
參考文獻 [1] R. J. Howarth and B. Hilary,“ A analogical representation of space and time,”” Image Vis. Comput., vol. 10, no. 7, pp.467-478,1992.
[2] A. F. Bocick and A. D. Wilson, “A state-based technique to the representation and recognition of gesture”IEEE Trans. Pattern Anal. Machine Intell.,vol. 19 pp. 1325-1337,Dec, 1997
[3] A. D. Wilson, A. F. Bobick, and J. Cassell, “Temporal classification of natural gesture and application to video coding,: IEEE conf. computer vision pattern recognition ,1997, pp. 948-954
[4] F. Bashir. A. Khokhar, D. Schonfeld, “Automatic object trajectory-based motion recognition using Gaussian mixture models”, IEEE conf.Multimedia and Expo,2005
[5] N. Johnson and D. Hogg, “Learning the distribution of object trajectories for event recognition,”Image Vis. Comput.1996
[6] N. Sumpter and A. Bulpitt, ”Learning spatio-temporal patterns for predicting object behavior,” Image Vis. Comput.,2000
[7] W. M. Hu, D. Xie, and T. N. Tan, “A hierarchical self-organizing approach for learning the patterns of motion trajectories,” IEEE Trans.on neural networks,2004
[8] J. Owsens and A. Huter, “Application of the self-organizing map to trajectory classication,” in Proc. IEEE Int. Workshop Visual Surveillance, 2000
[9] C. Stauffer and W. Grimson, “Adaptive background mixture models for real-time tracking”in Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, 1999, pp. 246-252.
[10] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: principles and practice of background maintenance,”in Proc. Int. conf. Computer Vision, 1999,pp. 255-261.
[11] I. Haritaoglu, D. Harwood, and L. S. Davis,“ W4 :Real time surveillance of people and their activities,”IEEE Trans. Pattern Anal. Machine Intell., vol.22, pp. 809-830, Aug. 2000
[12] S. Mckenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler,”Tracking groups of people,” Computer Vision, Image Understanding, vol. 80, no. 1 pp. 42-56,2000
[13] R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt and L. Wixson, “A system for video surveillance and monitoring,” Tech. Rep., The Robotics Institute, Carnegie Mellon University, 2000. CMU-RI-TR-00-12.
[14] M. Massey and W. Bender, “Salient stills: Process and practice”, IBM Systems Journal, vol.35, NO. 4, 1996,pp.557-573
[15] T. Cormen and al. Introduction to Algorithm. Second Edition, The MIT Press, 2001
[16] W. Hu,D. Xie, Tieniu, and S. Maybank, “Learning Activity Patterns Using Fuzzy Self-Organizing Neural Network”, IEEE Trans. On Systems Man and Cybernetics, 2004
[17] J. S. Zhang and T. W. Leung, “Improved Possibilistic C-Means Clustering Algorithms”, IEEE Trans. On Fuzzy System, 2004
[18] Krishnapuram R, Keller JM. “A possibilistic approach to clustering”, IEEE Trans. On Fuzzy Systems, 1996
[19] A. Prati and al. “Detecting moving shadows : algorithms and evaluation” IEEE trans. On Pattern Analysis and Machine Intelligence, 2003
[20] N . Herodotou, K.N. Olataniotis and A.N. Venetsanopoulos, “ A color Segmentation Scheme for Object-Based Video coding”, IEEE symp Advances in Digital Filtering and signal Processing,1998
[21] P. Kumar and al. “A comparative study of different color spaces for foreground and shadow detection for traffic monitoring system”, Proc. Of The IEEE 5th Inter. Conference on Intelligent Transportation Systems, 2002
[22] A. Senior “Tracking people with probabilistic appearance. Models” In IEEE Int. Workshop on PETS, pp. 48–55, June. 2002.
[23] N. R. Pal, K. Pal, J. M. Keller, and James C. Bezdek, “A possibilistic Fuzzy c-Means Coustering Algorrithm”IEEE Trans. On Fuzzy Systems. 2005
[24] M. Dahmane and J. Meunier “Real-Time Video Surveillance with Self-Organizing Maps”Proc. Of the Second Canadian Conference on Computer and Rovot Vision ,2005
[25] 蘇木春, 張孝德, “機器學習:類神經網路、模糊系統以及基因演算法則”, 全華科技圖書股份有限公司, 2003.
指導教授 范國清(Kuo-Chin Fan) 審核日期 2006-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明