以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:101 、訪客IP:18.227.48.237
姓名 李惠萍(Hui-ping Lee) 查詢紙本館藏 畢業系所 資訊工程學系在職專班 論文名稱 不同天候狀況的交通標誌偵測與辨識
(Traffic Sign Detection and Recognition on Different Weather Conditions)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 隨著生活品質的提昇,車輛輔助安全駕駛系統,也就變得越來越重要。交通標誌是提供駕駛人關於道路狀況的資訊且根據中華民國交通部交通法規[21],有90%的交通標誌是含有紅色外框的警告、禁止、限制標誌。在本研究中,我們將一部相機架設在車上,用來偵測紅色的交通標誌,並且辨識速限交通標誌的速度來幫助駕駛人避免超速危險的發生。 摘要(英) In these few decades, the vehicle number is rapidly increasing because people’s incomes are increasing. In addition to the vehicle number, more factors of road situation, driving environment, and human attention result in a large amount of traffic accidents and casualties. If there is a mechanism to help the driver to detect the road situation and driving environment, and then to provide some useful information to the driver in these situations, the danger is therefore avoided. In this thesis, we set up one camera on the vehicle to capture images for detecting traffic sign with red color border and recognize the speed in speed limit traffic sign. 關鍵字(中) ★ 交通標誌偵測
★ 駕駛輔助系統
★ 交通標誌辨識關鍵字(英) ★ SVM
★ Tracking
★ Traffic Sign
★ Hopfield
★ Recognition論文目次 第一章 緒論..................................................................................................... 1
1.1 研究目的與動機........................................................................... 1
1.2 相關研究....................................................................................... 2
1.3 系統架構....................................................................................... 3
1.4 論文架構....................................................................................... 5
第二章 交通標誌偵測..................................................................................... 6
2.1 交通標誌分析............................................................................... 6
2.2 影像平均亮度偵測....................................................................... 8
2.3 影像強化..................................................................................... 12
2.4 紅色像素點偵測......................................................................... 15
第三章 交通標誌分類................................................................................... 19
3.1 交通標誌分類架構..................................................................... 19
3.2 輪廓追蹤..................................................................................... 20
3.2 支援向量機簡介......................................................................... 24
3.2.1 線性支援向量機.............................................................. 25
3.2.2 線性不可分離支援向量機.............................................. 29
3.2.3 非線性支援向量機.......................................................... 30
3.3 支援向量機系統的建立............................................................. 31
第四章 交通標誌速限辨識........................................................................... 35
4.1 速限數字偵測............................................................................. 35
4.2 霍普菲爾類神經網路簡介......................................................... 39
第五章 實驗................................................................................................... 45
5.1 實驗環境..................................................................................... 45
5.2 交通標誌偵測............................................................................. 46
5.3 交通標誌分類............................................................................. 56
5.4 交通標誌速限辨識..................................................................... 63
第六章 結論................................................................................................... 69
參考文獻......................................................................................................... 70
附錄:標準交通標誌..................................................................................... 73參考文獻 [1] Asakura, T., Y. Aoyagi, and K. Hirose, “Real-time recognition of road traffic sign in moving scene image using new image filter,” IEEE Trans. Industrial Electronics, vol.3, no.6, pp.2207-2212, Oct. 2000.
[2] Cheng, S. C., Detection of Unstructured Road Boundary and Road Sign Recognition, Master Thesis, Univ. of National Chung Cheng, Chiayi, Taiwan, 2003.
[3] Escalera, A. D. L., L. E. Moreno, M. A. Salichs, and J. M. Armingol, “Road traffic sign detection and classification,” IEEE Trans. Industrial Electronics, vol.44, no.6, pp.848-859, Dec. 1997.
[4] Fang, C. Y., S. W. Chen, and C. S. Fuh, “Road-sign detection and tracking,” IEEE Trans. Vehicular Technology, vol.52, no.5, pp.1329-1341, Sep. 2003.
[5] Garcla, M. A., M. A. Sotelo, and E. M. Gorostiza, “Traffic sign detection in static images using matlab,” IEEE Trans. Emerging Technologies and Factory Automation, vol.2, no.5, pp.212-215, Sep. 2003.
[6] Grigorescu, C. and N. Petkov, “Distance sets for shape filters and shape recognition,” IEEE Trans. Image processing, vol.12, no.10, pp.1274-1286, Oct. 2003.
[7] Han, L., L. Ding, and Q. Li, “Real-time recognition of road traffic sign in moving scene image using genetic algorithm,” in Proc. of the 4th World Congress on Intelligent Control and Automation, Shanghai, China, June 10-14, 2002, pp.1027-1030.
[8] Huang, W. C. and C. H. Wu, “Adaptive color image processing and recognition for varying backgrounds and illumination conditions,” IEEE Trans. Industrial electronics, vol.45, no.2, pp.351-357, Apr. 1998.
[9] Hsien, J. C., Road Sign Detection and Recognition, Master Thesis, Univ. of Yuan-Ze, Chungli, Taiwan, 2003.
[10] Hsueh, S. L., Two-Step Road Sign Recognition, Master Thesis, Univ. of Yuan-Ze, Chungli, Taiwan, 2002.
[11] Jack, K., Video Demystified, 3th Edition, LLH Technology, Eagle Rock, VA, 2001.
[12] Lee, J. H. and K. H. Jo, “Traffic sign recognition by division of characters and symbols regions,” in Proc. of the 7th Korea-Russia Int. Symp., Korea, 2003, pp.324-328.
[13] McCollum, A. J., C. C. Bowman, P. A. Daniels, and B. G. Batchelor, “A histogram modification unit for real-time image enhancement,” Computer Vision, Graphics and Image Processing, vol.12, pp. 337-398, 1988.
[14] Miura, J., T. Kanda, and Y. Shirai, “An active vision system for real-Time traffic sign recognition,” in Proc. of IEEE Intelligent Transportation Systems Conf., Dearbom, Michigan, Oct.1-3, 2000, pp.52-57.
[15] Pacheco, L., J. Batlle, and X. Cufi, ”A new approach to real time traffic sign recognition based on color information,” in Proc. of IEEE Intelligent Vehicles Symp., Oct. 24-26, 1994, pp.339-344.
[16] Piccioli, G., E. D. Michel, P. Parodi and M. Campani, “Robust method for road sign detection and recognition,” Image and Vision Computing, vol.14, pp.209-223, 1996.
[17] Priese, L., J. Klieber, R. Lakmann, V. Rehrmann, and R. Schian, “New results on traffic sign recognition,” in Proc. of IEEE Intelligent Vehicles Symp., Oct. 24-26, 1994, pp.249-254.
[18] Sandoval, H., T. Hatori, S. Kitagawa, and Y. Chigusa, “Angle-dependent edge detection for traffic signs recognition,” in Proc. of IEEE Intelligent Vehicles symp., Dearbom, Michigan, Oct.3-5, 2000, pp.308-313.
[19] Tseng, D. C., Image Processing, National Central University, Chungli, Taiwan, 2004.
[20] Yabuki, N., Y. Matsuda, Y. Sumi, Y. Fukui, and S. Miki, “Active net control for traffic signs detection,” in Proc. of IEEE International on Vehicle Electronics Conf., Sep. 25-28, 2001, pp.151-155.
[21] Yang, S. M., Traffic Sign Detection and Recognition in Noisy Outdoor Scenes, Master Thesis, National Chengchi University, Taipei, Taiwan, 2004.
[22] “Electronic motor vehicles & driver information system,”
https://www.mvdis.gov.tw/
[23] Lin, C. J, “Libsvm – A Library for Support Vector Machines,”
http://www.csie.ntu.edu.tw/~cjlin/libsvm/指導教授 曾定章(Din-chang Tseng) 審核日期 2008-7-7 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare