博碩士論文 942206024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.116.12.7
姓名 黃建福(Chian-fu Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 表面次微米結構增加矽薄膜太陽能電池的光捕捉效率
(Improvement of the light trapping in silicon thin film solar cell by surface sub-micron structure)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 具三維光路之光連接發射端模組
★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組★ 建立於矽基光學平台之高分子聚合物波導光路
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組
★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組★ 利用光展量概念之微型投影機光學設計方法與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著矽原料的短缺及降低成本的的考量,矽薄膜太陽能電池日益受到
重視,但也由於材料厚度的減少,吸收效率隨之下降,其中更以紅外
波段影響甚大,因此如何有效的增加光在矽材料的光路徑,實為矽薄
膜太陽能電池之重要課題。本論文主要是利用表面的次微米結構提升
矽薄膜太陽能電池的光捕捉效率,提出對稱型與非對稱型次微米光柵
結構,經由FDFD 演算法觀察光在結構中各filling factor 間的耦合形
成橫向傳遞的效果。本文更針對矽材料中理論轉換效率高的近紅外波
段(900 nm~1100 nm),來分析光在矽薄膜內的停留時間,對稱型結
構與非對稱型可以將時間拉長至平面型的6 倍。在相同時間下
(C*t=25μm,C 為光速),光在非對稱型結構矽材料內的總能量可以
增加3~3.4 倍,且角度容忍度在±40o 內總能量亦維持在3 倍。當考慮
矽材料吸收的條件下,經由優化設計的非對稱型結構可以有效的提升
矽薄膜太陽能電池等效光路徑1.3~3.3 倍,進而顯著增加矽薄膜太陽
能電池的光捕捉效率;以利於在考慮材料成本的同時亦能維持其效
率,使得矽薄膜太陽能電池更具實用性。
摘要(英) Silicon thin film solar cell is paid attention to think of reducing silicon materials to low cost day by day. But because of the reduction of the thickness of material, absorption will be reduce, near IR and IR especially. So, for Si thin film solar cell it is the important subject how effective increase the optical path in the silicon. This thesis is about using surface sub-micron structure to improve the light trapping of Si thin film solar cell. Two structures of symmetrical and asymmetric type each was be proposed, and performed by FDFD algorithm can observe the light coupling among the every filling factor. This thesis analyses the time of light staying in Si for near IR (900 nm~1100 nm) with high conversion efficiency to the theory in the silicon material .The symmetrical and asymmetrical structures can enhance decay time 6 times . Under the same time, total energy of light in silicon can enhance 3.4 in asymmetric structure, Under 40° of angles also maintains 3 times. As considering the absorption coefficient of materials, optimized asymmetrical structure can improve the optical path 1.3~3.3 times, and then effectively improve the light trapping. It can maintain the conversion efficiency while considering the cost of material, and make the silicon thin film solar cell have practicability even more.
關鍵字(中) ★ 光捕捉
★ 矽薄膜太陽能電池
★ 結構
關鍵字(英) ★ light trapping
★ Si thin film solar cell
★ sub-micron structure
論文目次 摘要........................................................................................................... iv
致謝.............................................................................................................v
目錄........................................................................................................... vi
圖目錄..................................................................................................... viii
第一章 緒論.............................................................................................1
1-1 太陽能電池簡介..........................................................................1
1-2 太陽能電池發電原理..................................................................3
1-3 研究動機......................................................................................4
第二章 有限時域差分法(Finite-Difference time-Domain ,FDTD)於矽
薄膜太陽能電池光捕捉特性分析............................................6
2-1 FDTD 理論.................................................................................6
2-2 FDTD 於矽薄膜太陽能電池模型及其光捕捉特性分析........8
第三章 對稱型次波長結構之矽薄膜太陽能電池光學特性分析......10
3-1 對稱型結構設計........................................................................10
3-1.1 設計原理..........................................................................10
3-1.2 FDTD 於矽薄膜太陽能電池之光場分析.....................11
3-2 光捕捉特性分析........................................................................14
3-2.1 結構對波長響應..............................................................14
3-2.2 結構與入射角響應..........................................................19
第四章 非對稱型次微米結構於矽薄膜太陽能電池光捕捉特性改善22
4-1 非對稱型結構設計....................................................................22
4-1.1 設計原理..........................................................................22
4-1.2 FDTD 於矽薄膜太陽能電池之光場分析.....................22
4-2 光捕捉特性分析........................................................................25
4-2.1 結構對波長響應..............................................................25
4-2.2 結構與入射角響應..........................................................30
4-3 對稱型與非對稱型結構光捕捉效率比較與討論....................33
第五章 非對稱型結構於矽薄膜太陽能電池等效光路徑之延長........36
5-1 光捕捉效率及其穿透頻譜響應之關係....................................36
5-2 非對稱型結構之等效光路徑計算與分析……………………39
第六章 結論.............................................................................................40
參考文獻...................................................................................................41
參考文獻 [1]莊嘉琛編譯, “太陽能工程-太陽電池篇”
[2]A.Tavlove,”The Finite-Difference Time-Domain Method", Computational Electrodynamics (1995)
[3] K.S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Trans. Antennas Propagat., AP-14, 302 (1966)
[4] S. S. Wang, and R. Magnusson “Theory and applications of guided-mode resonance filters”, Appl. Opt. 32, 2606(1993).
[5] C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee and J. C. Yang, “Si-Based Guided-Mode Resonance Filter on a Microoptical Bench”, Electronics Letters , 40 (21), 1335–1336 (2004).
[6] M. L. Wu, C. L. Hsu, Y. C. Liu, C. M. Wang, and J. Y. Chang, “Silicon-based and suspended-membrane-type guided-mode resonance filters with a spectrum-modifying layer design”, Opt. Lett. 31, 3333(2006).
[7] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71,811-818(1981).
[8] T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894-937(1985).
指導教授 伍茂仁、張正陽
(Mao-jen Wu、Jeng-Yang Chang)
審核日期 2007-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明