博碩士論文 942206067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.219.15.112
姓名 陳家進(Chia-Chin Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 大截面積SOI脊形波導之研究
(Study of Large Cross-Section SOI Rib Waveguide)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於SOI晶片與微電子技術的高度相容性,SOI逐漸成為平面光路的主要應用平臺。然而受制於矽材與空氣、二氧化矽之折射率反差過大,SOI平板波導之單模孔徑僅達0.2μm,造成極嚴重的光纖耦合問題。我們利用脊形波導結構的特性,在特定結構下,可以抑制高階波導模態的產生,且可達到具有10 × 6 μm 2之大孔徑,經由計算與單模光纖的直接耦合效率可高達 -1.25 dB,使其易於與光纖連結並增加實用性。
製程上為了達到具光學品質脊形波導側壁,我們以電子束微影法來定義結構,並以電感耦合電漿式反應性離子蝕刻可以得到高達3.5μm、無側蝕,且極為光滑的側壁蝕刻結果。利用單模光纖與脊形波導直接耦合之量測結果顯示,一個長度達 1.3 公分的長直波導,其插入損耗可以達到 - 4.46 dB。我們並以一光學放大系統來截取脊形波導的模態場圖,經由分析比對,可以證明該模態與設計結果十分吻合。
為了使微光學元件在平面光路上達到高密度的整合,波導結構需要在小區域裡達到大角度的彎曲。我們利用相位補償的方式,在彎曲過程中,經由空氣柱微透鏡讓波導之特徵模態得以維持。對於上述所提之大孔徑的單模脊形波導,我們設計出具有10°的大角度彎曲波導結構,曲率半徑僅達 27 μm,且彎曲損耗僅達 - 1.61 dB。我們並成功的以聚焦離子束製作出具相位補償之微空氣稜鏡。
摘要(英) Silicon-on-insulator (SOI) waveguides have received much attention as a platform for planar lightwave circuits (PLCs) due to their compatibility with complementary metal oxide semiconductor (CMOS) technologies. Light in the silicon layer of SOI is naturally confined in the vertical direction because of the high index contrast between the bottom oxide layer, Si layer, and air. However, owing to the inherently large index contrast between si and air, the core size of a single-mode SOI waveguide is generally less than sub-micro size, resulting in a very serious coupling problem.
Rib waveguide with specific structure can provide a core width with large cross-section, but still maintain in single-mode operation. In this paper, a large single-mode rib waveguide is designed and demonstrated. For easily coupling to SMF, the upper silicon layer is chosen to 10 μm, and the corresponding width of core is 6 μm with etching depth equal to 3.5 μm. On the basis of the above design, a calculation results of a butt-joint interconnect from SMF can be as high as -1.25 dB. The polarization-dependence loss is less than 0.01 dB, and wavelength- dependent loss preserves 1 dB variation within 100 nm.
E-beam lithography is employed in this fabrication process due to obtain a waveguide sidewall with optical performance. By ICP-RIE dry etching process, the side-wall angle is very close to 90°, which maintains the designed eigen-mode correctly. The smooth side-wall roughness results in the low propagation loss of 0.9 dB/cm. Moreover, the near-field mode pattern is also measured by IR-camera, and it shows highly coincident to the designed eigen mode.
For the purpose of high-density integration in PLC, a phase- compensated air-based microprism is introduced to a wide-angle bending rib waveguide. An air microprism, which can be made by directly dry etching up to oxide layer, compensates the phase difference in this rib waveguide bend, and then properly tilts the planar wavefront to the designed bending angle. A 10° bending waveguide with radius of curvature of only 27.1 μm is designed and fabricated.
關鍵字(中) ★ 聚焦離子束
★ 感應耦合電漿反應離子蝕刻
★ 脊形波導
★ 電子束微影法
關鍵字(英) ★ rib waveguide
★ SOI
★ E-beam lithography
★ ICPRIE
★ FIB
論文目次 摘要 I
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1前言 1
1.2 波導簡介 1
1.3 研究動機 11
第二章 波導理論與設計 15
2.1 SOI簡介 15
2.2 SOI平板波導 17
2.3 SOI脊形波導 20
2.4彎曲波導之設計 23
第三章 元件之製作 28
3.1 製程問題分析 28
3.2 元件製作流程 29
3.3 波導之製作 32
3.3.1微影製程 32
3.3.3 蝕刻製程 37
3.4空氣柱稜鏡之製作 39
3.5 波導端面處理 41
3.6 波導端面之抗反射層 43
第四章 量測結果與討論 45
4.1量測架構介紹 45
4.2長直波導之量測 46
第五章 結論 52
參考文獻 53
參考文獻 1.S. E. Miller, ‘‘Integrated optics: an introduction,’’ Bell System Technol. J., 48, 2059 , 1969
2.Clifford R. Pollock and Michal Lipson, Integrated Photonics, Kliwer Academic, Massachusetts, 2003.
3.B. Alkali, P. D. Trinh, S. Yegnanarayanan, F. Coppinger, “Guided-Wave Optics in Silicon-on-Insulator Technology,” IEE, Proc.-Optoelectron, 143, 1996
4.Yougjin Wang, Zhilang Lin, Changsheng Zhang, Fan Gao, and Feng Zhang, “Integrated SOI Rib Waveguide Using Inductively Coupled Plasma Reactive Ion Etching, ” IEEE, Quantum Electronics, 11, 2005
5.樊中朝,余金中,陳少武,楊笛,嚴清峰,王良臣,「ICP蝕刻參數對SOI脊形波導側壁粗糙度的影響」,半導體學報,25,1500,2004
6.J. Cardenas, L. Li, S. Kim, and G. P. Nordin, ‘‘Compact low loss single air interface bends in polymer waveguides,’’ Opt. Express 12, 5314, 2004
7.Y. Qian, S. Kim, J. Song, and G. P. Nordin, “Compact and low loss silicon-on-insulator rib waveguide 90° bend,” Opt. Express, 14, 6020, 2006
8.J. S. Jensen, O. Sigmund, L. H. Frandsen, P. I. Borel, A. Harpøth, and M. Kristensen, ‘‘Topology Design and Fabrication of an Efficient Double 90 Photonic Crystal Waveguide Bend,’’ IEEE Photon. Techn. Lett., 17, 1202, 2005
9.W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout and R. Baets, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12, 1583, 2004
10.H. B. Lin, J. Y. Su, P. K. Wei, and W. S. Wang, “Design and Application of Very Low-Loss Abrupt Bends in Optical Waveguides,” IEEE J. Quantum Electronics, 30, 2827, 1994
11.H. B. Lin, Y. B. Lin, and W. S. Wang, “Analysis of Abrupt Waveguide Bend with Low-Index Microprism,” IEEE, Quantum Electronics, 34, 2291, 1998
12.C. T. Lee, M. L. Wu, “Apexes-Linked Circle Grating for Low-Loss Waveguide Bends,” IEEE, Photonics Technology Letters, 13, 597-599, 2001
13.R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguide in GeSi-Si and Si-on-SiO2,” IEEE, Quantum Electronics, 27, 1971, 1991
14.P. D. Trinh. S. Yegnanarayanan, and B. Jalali, “5×9 Integrated Optical Star Coupler in Silicon-on-Insulator Technology,” IEEE Photon. Technol. Lett., 8, 794, 1996
15.P. D. Trinh. S. Yegnanarayanan, and B. Jalali, “Integrated optical directional coupler in silicon-on-insulator,” Electron. Lett., 31, 2097, 1995
16.A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide circuits for fiber optic sensors,” in Pric. SPIE, Distributed and Multiplexed Fiber Optic Sensors III, 2071, 190, 1993
17.A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol., 12, 1771, 1994
18.P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Guided-wave optical circuits in silicon-on-insulator technology,” in Tech. Dig. Integrated Phonoics Res. Conf., 273, 1996
19.Y. Tang, W. Wang, Y. Wu, J. Yang, Y. Wang, "Design and fabrication of multimode interference coupler with strong confinement structure on silicon-on-insulator," Optical Engineering - Bellingham, 43, 2495, 2004
20.G. T. Reed and A. P. Knights, Silicon Phtonics, John Wiley & Sons, Ltd, 2004
指導教授 張正陽(Jeng-Yang Chang) 審核日期 2007-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明