博碩士論文 942306011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.145.92.194
姓名 朱官柏(Guan-Po Chu)  查詢紙本館藏   畢業系所 光電科學研究所碩士在職專班
論文名稱 光學印刷電路板之製作與特性分析
相關論文
★ 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究★ 以氬離子雷射對玻璃材料加工之研究
★ 以裸光纖激發球共振腔之共振譜研究★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究
★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件★ S型彎曲波導與微米小球共振腔之光耦合效率研究
★ 錐狀光纖與微米球共振腔耦合之研究與應用★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究
★ 利用光子晶體的能隙邊緣移動達成全光開關之研究★ 利用繞射圖形檢測錐狀光纖的製造與品質
★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器★ 鈉鉀離子交換波導之製作及其表面消逝波之研究
★ 拉伸式長週期光纖光柵的模態色散現象研究★ 可調式窄頻液晶濾波器
★ 基於D形光纖之拉曼感測器模擬與設計★ 基於D形光纖之拉曼感測器製作與量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在高效能的電子系統中,處理器的數目越來越多,晶片的速度越來越快,但系統的性能被晶片間相互連結的金屬線路所局限,在這類系統中,光學連結會被考慮來取代電子連結,因為光學連結對頻寬的高容量可降低系統的性能受線路長度的影響。聚合物光波導因為能使成本降低、可得較高佈線密度且有機會與電路板製程整合,所以一直是光波導材料的重點研究對象。
本研究所使用的EpoCore 和EpoClad 是以含環氧基的聚合物為基本所發展的光阻劑。使用作為核心材料的EpoCore和作為覆蓋隔離的EpoClad,可在標準電路板技術和量產設備下製作熱穩定性高的光波導產品。
在光波導線路製作與量測後,我們得到光波導的平均傳輸損耗約為0.45dB/cm , 達到我們所訂定之規格(0.5dB/cm) 。為了後續將光波導線路設計於印刷電路板內層,在搭配VSCEL與PD後可進行二維的光訊號傳遞,本研究第二部分針對具有45°鏡面的光波導線路進行零件高度、鏡面角度與粗糙度的光學模擬,同時彙整45°鏡面的製作方法供後續研究參考。
摘要(英) With the increasing of the number of processors and the operational speed, electronic interconnect suffers attenuation, cross talk, power consumption, with degrades the performance of high speed transmission systems. Optical interconnects, on the contrary, are being considered to replace electrical interconnects due to their high bandwidth capacity, immunity to electromagnetic interference, low cost and sufficiently light weight. Polymer waveguides are attractive candidates as optical interconnect media since their capability to enable low-cost and high-density interconnects, and can be easily integrated into current organic board-level processes.
EpoCoreTM and EpoCladTM are chemically strengthened photoresists based on multifunctional oligomers containing epoxy groups. Using EpoCore as core material and EpoClad as cladding, thermally stable optical waveguides are fabricated, via standard circuit board fabrication technology.
The average propagation loss of the waveguide is estimated to be 0.45dB/cm; at wavelength of λ=850nm. In order to access whether the waveguide can be made on the inner large of the PCB we simulate the propagation characteristics through the linkage from the VSCEL, 45 degree mirror, to the PD. Variousparamters such as the height of the VCSEL and PD,angle of the mirror,and surface roughness are all taken in to account.
It is concluded that the alignment tolerance can be made less stringent if the effective area of the PD can be made larger (0.2 mm x 0.2mm) and the Diverging angle of the VCSEL can be made smaller (8 degree).
關鍵字(中) ★ 45°鏡面
★ 有機光波導
關鍵字(英) ★ 45 degree mirror
★ Organic waveguide
論文目次 第一章 緒論 1
1.1 光學電路板(EOCB)簡介 1
1.2 光學電路板研究計劃 5
1.3 論文架構 6
第二章 應用於印刷電路板之光波導聚合物材料 7
2.1 光波導聚合物材料介紹 7
2.2 造成光波導中光耗損的因素 9
2.3 光波導聚合物材料EpoCore 和EpoClad介紹 11
第三章 光波導聚合物於印刷電路板上的製作及光學特性的量測 14
3.1 光波導線路製作介紹 14
3.1.1 傳統影像轉移 14
3.1.2 雷射直接成像(LDI) 15
3.1.3 壓鑄成像(Embossing) 17
3.1.4 各製程優缺點比較 20
3.2 EOCB上光波導線路製作 21
3.2.1 光波導線路製作流程 21
3.2.2 光波導線路上光訊號量測 23
3.2.2.1 量測實驗裝置 23
3.2.2.2 光訊號量測項目 24
第四章 有機光波導之光學模擬 28
4.1 光源高度及光接受器高度改變時光損耗之模擬 29
4.2 當45°鏡面角度改變時光損耗變化之模擬 75
4.3 當45°鏡面非光滑平面時光損耗變化之模擬 85
第五章 結論及未來展望 97
5.1 結論 97
5.1.1 本計劃現階段成果 97
5.1.2 計劃階段成果檢討 100
5.2 未來展望 108
5.2.1 直接於光波導聚合物上製作45°鏡面 109
5.2.1.1 傳統影像轉移 109
5.2.1.2 雷射燒融(Laser Ablation) 111
5.2.1.3 機械切割(Dicing) 112
5.2.1.4 層次性灰階影像轉移(Grey Scale lithography) 113
5.2.1.5 熱壓鑄成像(Hot Embossing) 114
5.2.2 有機光波導線路製作於印刷電路板內層 116
5.2.2.1 多層板壓合 116
5.2.2.2 機械鑽孔與通孔電鍍製程 117
5.2.3 含45度角之有機光波導模組於電路板上的應用 117
參考資料 120
參考文獻 [1] Xiaolong Wang, Wei Jiang, Member, IEEE, Li Wang, Hai Bi, and Ray T. Chen, Fellow, IEEE, Fully Embedded Board-Level Optical Interconnects From Waveguide Fabrication to Device Integration, Journal of Lightwave Technology,Vol. 26,January 15,2008
[2] The National Technology Roadmap for Semiconductors (ITRS)—Technology Needs. Austin, TX: International SEMATECH, Semiconductor Industry Association, 200
[3] S. Berry, Advanced Bus and Interface Market and Trends. San Jose, CA: Electronic Trend, 2003
[4] D. Huang, T. Sze, A. Landin, R. Lytel, and H. L. Davidson, “Optical interconnects: Out of the box forever?,” IEEE J. Sel. Topics Quantum Electron., vol. 9, no. 2, pp. 614–623, 2003
[5] Shashikant G. Hegde, Investigation of Optical Loss Changes in Siloxane Polymer Waveguides during Thermal Curing and Aging, Georgia Institute of Technology, April 2008
[6] Savage, N., Linking with light [high-speed optical interconnects]. Spectrum, IEEE, 2002. 39(8): p. 32-36
[7] Yuzo Ishii, Tsuyoshi, Hayashi, and H i d e h Takahara, Demonstration of On-PCB Optical Interconnection Using Surface-Mount Package and Polymer Waveguide, 2003 Electronic Components and Technology Conference
[8] Yuzo Ishii, Shinji Koike, Member, IEEE, Yoshimitsu Arai, and Yasuhiro Ando, SMT-Compatible Large-Tolerance “OptoBump” Interface for Interchip Optical Interconnections, IEEE Transactions on Advanced Packaging , Vol. 26, No. 2, May 2003
[9] Hyun-Shik Lee, Shin-Mo An, S. G. Lee, B. H. O, S. G. Park, El-Hnag Lee, A 10 GBPS Interchip Optical Interconnection Module for Optical Circuit Board Application, 2006 OSA/NANO 2006
[10] Ming Zhou, Low-loss polymeric materials for passive waveguide components in fiber optical Telecommunication, Opt. Eng. 41(7) 1631–1643 (July 2002).
[11] Hong Ma, Alex K.-Y. Jen, Larry R. Dalton, Polymer-Based Optical Wave: Materials, Processing, and Devices, Advance Material 2003, 14, No 19, October 2
[12] Eldada L., L.W. Shacklette, Advances in polymer integrated optics. IEEE Journal of Selected Topics in Quantum Electronics, 2000. 6(1): p. 54-68.
[13] Kaino, T., Preparation of Plastic Optical Fibers for near-IR Region Transmission. Journal of Polymer Science Part a-Polymer Chemistry, 1987. 25(1): p. 37-46.
[14] Pirasteh, P., et al., Light propagation and scattering in porous silicon nanocomposite waveguides. Physica Status Solidia- Applications and Materials Science, 2005. 202(8): p. 1712-1716.
[15] H. Schröder , J. Bauer, F. Ebling, M. Franke, A. Beier, P. Demmer, W. Süllau,J. Kostelnik, R. Mödingerf, K. Pfeiffer, U. Ostrzinski, E. Griese, Waveguide and packaging technology for optical backplanes and hybrid electrical-optical circuit boards, Proc. of SPIE Vol. 6124 612407-1
[16] Louay Eldada, Robert Blomquist, Lawrence W. Shacklette , Michael J. McFarland, High-performance polymeric componentry for telecom and datacom applications, Opt. Eng. 39(3) 596–609 (March 2000)
[17] Steffen Uhlig, ORMOCER Materials Characterization, LAP- &Micro-Processing—Applied to Optical Interconnects and High-Frequency Packaging, Linkoping Studies in Science and Technology Dissertation No. 1011
[18] Elmar Griese, A High-Performance Hybrid Electrical–Optical Interconnection Technology for High-Speed Electronic Systems, IEEE Transactions on Advanced Packaging , Vol. 24, No. 3, August 2001
[19] Dengke Cai, Optical and Mechanical Aspects on Polysiloxane Based Electrical-Optical-Circuits-Board, Electrical Optical Circuit Board self packaging, Proceedings on 57th Electronic Components and Technology. Conference, ECTC 2007, Reno, Nevada, USA, 2007
[20] Tetsuzo Yoshimura, Member, IEEE, Tomoko Inoguchi, Takashi Yamamoto, Satoshi Moriya, Yoshihiro Teramoto,Yukihiko Arai, Member, IEEE, Takefumi Namiki, and Kunihiko Asama, Self-Organized Lightwave Network Based on Waveguide Films for Three-Dimensional Optical Wiring Within Boxes, Journal of Lightwave Technology, Vol. 22, No. 9, September 2004
[21] Nina Hendrickx, Geert Van Steenberge, Peter Geerinck, Jürgen Van Erps, Hugo Thienpont and Peter Van Daele, Laser Ablated Coupling Structures for Stacked Optical Interconnections on Printed Circuit Boards, Proc. of SPIE Vol. 6185 618503-2
[22] N Hendrickx, G Van Steenberge, P Geerinck and P Van Daele, Laser Ablation as Enabling Technology for the Structuring of Optical Multilayer Structures, Journal of Physics: Conference Series 59 (2007) 118–121
[23] N. Hendrickx, J. Van Erps, T. Alajoki, N. Destouches, D. Blanc, J. Franc, P. Karioja, H. Thienpont, P. Van Daele, Towards Low Cost Coupling Structures for Short-Distance Optical Interconnections, Dans Proceedings of the 16th European Microelectronics and Packaging Conference - 16th European Microelectronics and Packaging Conference, Finlande (2007)
[24] Alexei L. Glebov, Michael G. Lee, Kishio Yokouchi, Integration technologies for pluggable backplane optical interconnect systems, Optical Engineering 46 1, 015403 January 2007
[25] Takahiro Matsubara, Keiko Oda, Keiichiro Watanabe, Kaori Tanaka, Maraki Maetani, Yuriko Nishimura, Shigeo Tanahashi, Three Dimensional Optical Interconnect on Organic Circuit Board, 2006 Electronic Components and Technology Conference
[26] Clifford. Pollock,Michal Lipson,Integrated Photonics,Chapter 4
[27] L. M. Andrushko, T. V. Babkina, V. V. Grigor'yants, and K. P. Naumenko, Fiber-optic waveguides with rectangular cores, Sov. J. Quantum Electron. 9(10), Oct. 1979
指導教授 戴朝義(Chao-Yi Tai) 審核日期 2009-3-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明