博碩士論文 943202026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.129.195.254
姓名 游世豪(shih-hao Yu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 施工基樁坍孔及抽降地下水對鄰近既存基樁的影響評估
(The assessment of the effect of the collapsed constructing pile and the withdrew groundwater level on the existed pile.)
相關論文
★ 砂土層中隧道開挖引致之地盤沉陷與破壞機制及對既存基樁之影響★ 以離心模型試驗探討逆斷層作用下單樁與土壤互制反應
★ 攝影測量在離心模擬試驗之應用-以離心隧道模型之地表沉陷量量測為例★ 沉箱式碼頭受震反應的數值分析
★ 軟土隧道襯砌應力與地盤變位之數值分析★ 沉箱碼頭受震反應及側向位移分析
★ 潛盾隧道開挖面穩定與周圍土壓力之離心模擬★ 地理資訊系統應用於員林地區液化災損及復舊調查之研究
★ 黏性土層中隧道開挖引致之地盤沉陷及破壞機制★ 砂土層中通隧引致之地盤變位及其對既存基樁的影響
★ 既存隧道周圍土壓力受鄰近新挖隧道的影響★ 以攝影測量觀察離心土壩模型受滲流力作用之變位
★ 通隧引致鄰近基樁之荷重傳遞行為★ 潛盾施工引致之地盤沉陷案例分析
★ 以離心模型試驗探討高含水量黏性背填土 加勁擋土牆之穩定性★ 懸臂式擋土壁開挖之離心模型試驗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用離心模型試驗,探討位於飽和砂土層中之既存基樁,當鄰近施工基樁發生坍孔、以及抽降地下水對既存基樁的影響。分別探討(1)施工基樁在不同的坍孔深度以及跟既存基樁在不同的距離情況下,對既存基樁的影響。(2)不同降水深度對既存基樁軸向力的變化情況與樁身沉陷和地表沉陷。
研究結果顯示,在自重壓密階段,地盤的沉陷量都比樁體的沉陷量還大,各組試驗中立點也都位於樁尖附近,故其樁身軸向力都會隨著深度的增加而增大,且與理論分析差異不大。在既存基樁施加荷載階段,因為既存基樁沉陷大於地表沉陷,導致樁身摩擦力都往正摩擦力發展,且樁身量測的軸向力也與理論分析有良好的一致性。在施工基樁發生坍孔階段,可以發現當施工基樁中心與既存基樁中心水平距離1.5m時,既存基樁的樁身軸力,會因鄰近施工基樁發生坍孔而受到影響,也因為發生坍孔而有負摩擦力產生;但當施工基樁中心與既存基樁中心水平距離3m時,其既存基樁樁身軸力受到鄰近施工基樁則影響較小;另外,當鄰近施工基樁發生坍孔,既存基樁樁身摩擦力的發展會比只有單一既存基樁還小,這是因為土壤側向力變小的緣故。在地下水下降階段,樁身軸力會隨著降水深度的增加而增加,而且當既存基樁鄰近有施工基樁時,樁身摩擦力發展也比只有單一既存基樁還小,而且與理論分析也有良好吻合。另外,試驗量測土壤沉陷量與理論計算土壤沉陷量也相當吻合;且在既存基樁樁頭施加荷載階段、地下水下降階段,所估算的土壤之楊氏模數,與前人提出的土壤之楊氏模數相當吻合。
摘要(英) A series of centrifuge modeling tests were performed to study the effect of collapse of the adjacent constructing pile and the groundwater lowering on the existed pile in saturated sandy ground. Two topics are investigated. The first is the effect of the collapse of constructing pile on the existed pile. The second is the changes of axial force and settlement on the existed pile and the variation of the ground surface settlement as a result of different groundwater withdraw level.
The test results show that, at the self-weight consolidation stage, the settlement of the soil is greater than that of the existed pile and the neutral point of pile in all the tests is located at near the pile tip, leading to the axial force of existed pile increases with the increasing depth. In the next stage while the work load was applied on the existed pile head, the settlement of the existed pile is greater than that of the soil resulting in the positive skin friction developed along the pile. When the distance between the existed and the constructing piles is 1.5 m, the collapse of constructing pile leads to the significant changes of the axial force within the existed pile and the occurrence of the negative skin friction along the existed pile. But it would disappear when the distance of piles is 3 m. Besides, the collapse of constructing pile leads to the decrease in the skin friction of the existed pile because of the decrease in the lateral earth pressure, and so does the lowering groundwater level resulting from the increase in the axial force. In addition, the measured ground surface settlement, skin friction and axial force of pile are in good agreement with that obtained from the theoretical analysis. The estimated Young’s modulus Es at each stage of testing procedure also corresponds with that proposed in the past studies.
關鍵字(中) ★ 地下水下降
★ 坍孔
★ 施工基樁
★ 既存基樁
關鍵字(英) ★ groundwater lowering
★ collapse hole
★ constructing pile
★ existed pile
論文目次 中 文 摘 要--------I
英 文 摘 要--------II
目 錄-------------IV
表 目 錄-----------VII
圖 目 錄-----------VIII
照 片 目 錄--------XII
符 號 說 明--------XIII
第一章 緒論------------------------1
1-1 緣起---------------------------1
1-2 選用離心機模擬的原因-----------2
1-3 研究動機-----------------------4
1-4 研究架構-----------------------4
1-5 論文內容-----------------------5
第二章 文獻回顧--------------------6
2-1基樁與土壤間之摩擦質------------6
2-1-1 樁-土界面之位移--------------8
2-1-2 樁-土相對位移----------------8
2-2負摩擦力發生之機制--------------9
2-3基樁負摩擦力之估計--------------11
2-3-1 中立點位置-------------------11
2-3-2 單樁負摩擦力之推求-----------13
2-4前人基樁負摩擦力之研究----------18
2-4-1 現場量測法-------------------19
2-4-2 室內模型試驗法---------------20
2-4-3 數值分析法-------------------21
2-5模擬基樁坍孔的方法--------------22
2-6樁基礎承載力--------------------23
2-6-1 基樁荷重傳遞機制-------------23
2-6-2 單樁容許垂直承載力-----------23
2-7離心模型基本原理----------------27
2-7-1 離心模型試驗之尺度效應-------28
2-7-2 離心模型之基本相似律---------29
2-7-3 離心機試驗之孔隙水壓消散問題-30
2-7-4 離心模型試驗之模型模擬-------32
2-7-5 離心模型試驗之應力誤差-------33
第三章 試驗土樣、儀器設備及試驗方法-------51
3-1試驗土樣------------------------51
3-2試驗儀器及相關設備--------------51
3-2-1 地工離心機-------------------51
3-2-2 模型試驗箱-------------------52
3-2-3 移動式霣降機-----------------53
3-2-4 複動式氣壓缸-----------------54
3-2-5 模型坍孔基樁-----------------54
3-2-6 溶液座及降水設備備-----------55
3-2-7 其他量測工具-----------------55
3-2-8 直接剪力試驗系統-------------56
3-2-9 單向度壓密試驗系統-----------56
3-3模型製作及試體準備--------------56
3-3-1 模型計測樁之製作及基本性質---56
3-3-2 試體製作---------------------57
3-4模型計測樁校正------------------59
3-5試驗方法與步驟------------------59
第四章 理論分析與試驗結果之比較----87
4-1理論估算之前置試驗--------------87
4-1-1直接剪力試驗------------------87
4-2試驗砂試體沉陷的計算------------88
4-2-1 土體垂直方向的位移------88
4-3樁體表面摩擦力的計算------------90
4-3-1 剛塑性分析法-----------------90
4-4試驗用砂之性質及模型試驗的條件--92
4-5離心模型試驗結果分析與討論------93
4-5-1 自重壓密階段沉陷量測及軸力分析結果比較-------------93
4-5-2 既存基樁樁頭施加荷載階段沉陷量測及軸力分析結果比較-96
4-5-3 鄰近施工基樁發生坍孔沉陷量測及軸力分析結果比較-----97
4-5-4 地下水下降階段沉陷量測及軸力分析結果比較-----------98
4-5-5 樁身表面摩擦力分析---------------------------------99
4-5-6 試驗土體沉陷與理論估算法比較----------------------101
4-6土壤楊氏模數之估算-----------------------------------102
第五章 結論與建議---------------------------------------121
5-1 結論------------------------------------------------121
5-2 建議------------------------------------------------123
參考文獻------------------------------------------------124
參考文獻 [1]李崇正,「離心模型試驗在大地工程之應用」,地工技術雜誌,第36期,第76~91頁 (1991)。
[2]王維漢,「單樁負摩擦力之行為研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1997)。
[3]王訓濤、周南山,「承受側向力之基樁與土壤之互制作用」,地工技術雜誌,第24期,第34~48頁 (1988)。
[4]內政部營建署,「建築物基礎構造設計規範」,中華民國大地工程學會,第5-14~5-41頁 (2001)。
[5]謝依航,「基樁負摩擦力之模型試驗」,碩士論文,國立中央大學土木工程研究所,中壢 (2006)。
[6]歐晉德,「基樁負摩擦力」,地工技術雜誌,第18期,第24~33頁 (1987)。
[7]廖新興,「黏性土壤中鑽掘樁之摩擦特性」,博士論文,國立中央大學土木工程研究所,中壢 (1995)。
[8]張惠文、廖新興、陳國隆,「黏性土壤與剛材間之摩擦特性」,中華民國第十四屆全國力學會議,中壢,第841~850頁 (1990)。
[9]林杏性,「黏性土壤與不同材質基樁間之摩擦特性」,碩士論文,國立中央大學土木工程研究所,中壢 (1992)。
[10]盧玉璜,「黏性土層中基樁摩擦行為」,碩士論文,國立中央大學土木工程研究所,中壢 (1993)。
[11]Acutronic, Civil Engineering Centrifuge Model 665-1 Installation Manual 5941E, France (1992).
[12]Acutronic, Geotechnical Centrifuge Model 665-1 Product Description 5933H, France (1993).
[13]Azzouz, A.S., Baligh, M.M., and Whittle, A.J., “Shaft Resistance of Piles in Clay,” Journal of Geotechnical Engineering, ASCE, Vol. 116, No. 2, pp. 205~221 (1990).
[14]Alonso, E.E., Josa, A., and Ledesma, A., “Negative Skin Friction on Pile:A simplified Analysis and Prediction Procedure,” Geptechnique, Vol. 34, No. 3, pp. 341~357 (1984).
[15]Bowles, J.E., Foundation Analysis and design, 4th Edition, McGraw-Hill Book Company, pp. 745~753, pp. 843~848 (1988).
[16]Bjerrum, L., Johannesson, I.J., and Eido, O., “Reduction of Skin Friction on Steel Piles to Rock,” Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Vol. 2, pp. 27~34 (1969).
[17]Comodromos, E.M., and Bareka, S.V., “Evaluation of Negative Skin Friction Effects in Pile Foundation Using 3D Nonlinear Analysis,” Computers and Geotechnics, Vol. 32, No. 3, pp. 210~221 (2005).
[18]Choy, C.K., Standing, J.R., and Mair, R.J.,“Stability of a Loaded Pile Adjacent to a Slurry-Supported Trench,”Geotechnique, Vol. 10, No. 10, pp. 807~819 (2007).
[19]Endo, M., Minou, K., and Shibata, T., “Negative Friction Acting on Steel Pipe Piles in Clay,” Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Vol. 2, pp. 45 (1969).
[20]Fellenius, B.H., and Broms, B.B., “Negative Skin Friction for Long Piles Driven in Clay,” Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Vol. 2, pp. 12 (1969).
[21]Indraratna, B., Balasubramanian, A.S., Phamvan, P., and Wong, Y.K., “Development of Negative Skin Friction on Driven Piles in Soft Bankok Clay,” Canadian Geotechnical Journal, Vol. 29, pp. 393~404 (1992).
[22]Ilyas, T., Leung, C.F., Chow, Y.K., and Budi, S.S., “Centrifuge Model Study of Laterally Loaded Pile Groups in Clay,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No. 3, pp. 274~283 (2004).
[23]Jeong, S., Lee, J., and Lee, C.J.,“Slip Effect at the Pile-Soil Interface on Dragload,”Computers and Geotechnics, Vol. 31, No. 2, pp. 115~126 (2004).
[24]Lim, C.H., Chow, Y.K., and Karunaratne, G.P.,“Negative Skin Friction on Single Piles in a Layered Half-Space,”International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 17, No. 9, pp. 625~645 (1993).
[25]Leung, C.F., Lim, K.J., Shen, R.F., and Chow, Y.K.,“Behavior of Pile Groups Subject to Excavation-Induced Soil Movement,”Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 1, pp 58~65 (2003).
[26]Leung, C.F., Liao, B.K., Chow, Y.K., and Kog, Y.C.,“Behavior of Pile Subject to Negative Skin Friction and Axial Load,”Soils and Foundations, Vol. 44, No. 6, pp. 17~26 (2004).
[27]Lee, S.H., and Chung, C.K.,“An Experimental Study of the Interaction of Vertically Loaded Pile Groups in Sand,”Canadian Geotechnical Journal, Vol. 42, No. 5, pp.1485~1493 (2005).
[28]Leung, C.F., Ong, D.E.L., and Chow, Y.K.,“Pile Behavior due to Excavation-Induced Soil Movement in Clay. II:Collapsed Wall,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 132, No. 1, pp. 45~53 (2006).
[29]Moh, Z.C., Chin, C.T. and Chao, H.C.,“Influence of the Construction of a Bored Pile on Adjacent Piled Foundation,”Proceedings of the 13th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Kolkata, pp. 363~366 (2007).
[30]Meyerhof, G.G.,“Bearing Capacity and Settlement of Pile Foundation”Journal of Geotechnical Engineering, ASCE, Vol. 102, No. GT3, pp. 197~228 (1976).
[31]Ong, C.W., Leung, C.F., Yong, K.Y., and Chow, Y.K.,“Pile Responses due to Tunneling in Clay,”Physical Modelling in geotechnics-6th ICPMG., Hong Kong, pp. 1177~1182 (2006).
[32]Ong, D.E.L., Leung, C.F., and Chow, Y.K.“Pile Behavior due to Excavation-Induced Soil Movement in Clay. I:Stable Wall,”Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 132, No. 1, pp. 36~44 (2006).
[33]Parry, R.H., and Swain, C.W.,“Effective Stress Method of Calculating Skin Friction on Driven Piles in Soft Clay,”Ground Engineering, Vol. 4, pp. 24~26 (1977).
[34]Poulos, H.G., “Pile Behavior-Theory and Application,” Geotechnical, Vol. 39, No. 3, pp. 365~415 (1989).
[35]Shibata, T., Sekiguchi, H., and Yukitomo H., “Model Test and Analysis of Negative Skin Friction Acting on Piles,” Soils and Foundation, Vol. 22, No. 2, pp. 29~39 (1982).
[36]Wong, K.S., and Teh, C.I., “Negative Skin Friction on Piles in Layered Soil Deposits,” Journal of Geotechnical Engineering, Vol. 121, No. 6, pp. 457~465 (1995).
指導教授 李崇正(Chung-Jung Lee) 審核日期 2008-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明