博碩士論文 943202031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.148.108.192
姓名 郭致均(Chih-Chun Kuo)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以離心機模型試驗模擬基樁抗壓與抗拉行為
(The simulation of the pile behaviors on the compressive and the tensile pile head loading by centrifuge modeling tests)
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土層中隧道開挖引致之地盤沉陷與破壞機制及對既存基樁之影響★ 砂土中模型基樁之單向反覆軸向載重試驗
★ 邊坡穩定分析方法之不確定性★ 以離心模型試驗探討逆斷層作用下單樁與土壤互制反應
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 攝影測量在離心模擬試驗之應用-以離心隧道模型之地表沉陷量量測為例★ 土壤液化引致地盤永久位移之研究
★ 台北盆地地盤放大特性之研究★ 沉箱式碼頭受震反應的數值分析
★ 軟土隧道襯砌應力與地盤變位之數值分析★ 水力回填煤灰之動態特性
★ 沉箱碼頭受震反應及側向位移分析★ 潛盾隧道開挖面穩定與周圍土壓力之離心模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去許多研究指出,基樁受拉拔時之樁身摩擦力約為受壓時的50%。顯示基樁之受力機制在受到承壓與拉拔荷載影響時有明顯差異。因此本研究欲進ㄧ步以離心機模型樁載重試驗探討在不同長徑比下,基樁受壓與受拉時承載力與摩擦力之差異,試驗首先進行不同長徑比之樁在乾砂中之極限承壓與拉拔承載力試驗,藉以討論基樁在達到極限破壞時承壓與拉拔行為之差異以及極限荷載的大小與長徑比之關係。爾後再以單一樁徑進行工作荷載下反覆壓、拉樁載重試驗,總計進行五次循環作用,探討工作荷載下壓樁與拉樁循環作用的軸力與摩擦力之變化。依據試驗所得結果在極限破壞的狀況下,拉拔與承壓之承載力百分比隨長徑比的減少由63 %降至38 %,摩擦力百分比則由85 %降至62 %,而反覆壓、拉樁載重試驗結果得到基樁拉拔與承壓百分比值約在52 %~46 %間,承壓的摩擦阻抗無論在極限破壞或是工作荷載下皆大於拉拔的摩擦阻抗。
摘要(英) This study conducted a series of centrifuge model test to discuss the mechanism of the pile subjected to compressive and tensile loadings, and three different slender ratios of piles with the same embedded length were designed in the test. During the test, the model pile was first driven into the dry sand at 1g condition, and then an artificial gravity of 80g was applied in the centrifuge to simulate a full-scale prototype situation. Subsequently, two kinds of loading conditions were performed - monotonic loading and cyclic loading, and the differences of ultimate capacity, skin friction and end-bearing between the pile subjected to compressive and tensile loadings could be observed by measuring the axial force along the pile. From the results, the smaller the slender ratio, the smaller the skin friction ratio of tension to compression, the quantity of which ranges between 85 to 62% at ultimate state of monotonic loading. In cyclic loading test, the skin friction ratio of tension to compression gradually decreased from 52% to 46%. Besides, the pile skin friction in compressive condition is always larger than the one in tensile condition.
關鍵字(中) ★ 樁載重試驗
★ 摩擦力
★ 砂土
★ 模型試驗
★ 拉力樁
★ 壓力樁
關鍵字(英) ★ pile load test
★ friction
★ sand
★ model test
★ tensile pile
★ compressive pile
論文目次 中 文 摘 要.......................................I
英 文 摘 要......................................II
目 錄..........................................III
表 目 錄..........................................V
圖 目 錄.........................................VI
第一章 緒論.......................................1
1-1 研究動機與目的................................1
1-2 研究方法與流程................................2
1-3 論文架構......................................3
第二章 文獻回顧...................................5
2-1 現地基樁載重試驗..............................5
2-2基樁承壓之行為與機制...........................7
2-2-1受力機制.....................................7
2-2-2承載力理論...................................8
2-3基樁拉拔之行為與機制..........................15
2-3-1受力機制....................................15
2-3-2拉拔承載力理論..............................16
2-4基樁與土壤之界面摩擦行為......................20
2-4-1樁徑在摩擦行為之影響........................20
2-4-2側向土壓力係數在摩擦行為之影響..............22
2-5基樁承壓與抗拉之差異..........................23
2-6離心機模型試驗原理............................31
2-6-1離心模型之基本相似律........................31
2-6-2離心模型試驗之模型模擬......................32
2-6-3以離心模型試驗進行模型樁載重文獻研究........36
第三章 離心機模型試驗............................40
3-1試驗規劃與設計................................40
3-2試驗土樣及其基本性質..........................40
3-3試驗儀器設備..................................42
3-4試驗方法與步驟................................57
3-4-1試體製作....................................57
3-4-2樁土界面直接剪力試驗........................60
3-4-3模型基樁載重試驗............................63
第四章 試驗結果與分析............................69
4-1試驗分析與貫樁準備............................69
4-2極限承壓試驗..................................73
4-3極限拉拔試驗..................................88
4-4綜合分析與討論................................97
4-4循環工作載重試驗.............................110
第五章 結論與建議...............................139
5-1 結論........................................139
5-2 建議........................................142
參考文獻........................................143
參考文獻 1.王韋舜,「基樁抗壓與抗拉極限承載力之差異」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
2.王維漢,「單樁負摩擦力之行為研究」,碩士論文,國立中央大學土木工程學系,中壢(1997)。
3.內政部營建署,「建築物基礎構造設計規範」,中華民國大地工程學會,台北(2001)。
4.江國輝,「通隧引致鄰近基樁之荷重傳遞行為」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
5.李建中,「試樁加載過程及結果詮釋法之探討」,地工技術雜誌,第五期,第91~97頁(1984)。
6.洪正杰,「沈泥質砂土中拉力樁與壓力樁荷重行為之比較」,碩士論文,朝陽科技大學營建工程系,台中(2001)。
7.陳泓文,「砂土坡地井樁受側向力之離心機模型試驗」,碩士論文,國立中央大學土木工程學系,中壢(1999)。
8.梁能,「基樁軸向承壓之依時行為」,博士論文,國立中央大學土木工程學系,中壢(2002)。
9.黃俊鴻、楊志文,「基樁載重試驗承載力判釋方法之探討與建議」,地工技術雜誌,第八十期,第5~16頁(2000)。
10.黃信富,「通隧引致隧道上方短樁之反應」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
11.傅哲賢,「基樁抗壓與抗拉極限承載力之差異」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
12.謝依航,「基樁負摩擦力之模型試驗」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
13.茶古文雄,「建築設計杭引拔抵抗力機構考方」,基礎工,Vol. 22, No.7, pp.26-32 (1994)。
14.Alawneh, A.S., “Modelling Load-Displacement Response of Driven Pile in Cohesionless Soils under Tensile Loading” Computers and Geotechnics, Vol. 32, No.8, pp. 578-586 (2005).
15.Amira, M., Yokoyama, Y., and Imaizumi, S., “Friction Capacity of Axially Loaded Model Pile in Sand” Soils and Foundations, Vol.35, No.1, pp.75-82 (1995).
16.American Society for Testing Materials, “Standard Test Method for Piles Under Static Axial Compressive Load” Annual Book of Standard, ASTM D1143-81, pp.195-205 (1994).
17.American Society for Testing Materials, “Standard Test Method for Testing Individual Piles Under Static Axial Tensile Load” Annual Book of Standard, ASTM D3689-90, pp.530-540 (1994).
18.American Society for Testing Materials, “Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus” Annual Book of Standard, ASTM E111-82 pp.274-279 (1994).
19.Chattopadhyay, B.C., and Pise, P.J., “Uplift Capacity of Piles in Sand” Journal of Geotechnical Engineering, Vol.112, No.9, pp.888-904 (1986).
20.Das, B.M., and Seeley, G.R. “Uplift Capacity of Buried Model Piles in Sand” Journal of the Geotechnical Engineering Division, Vol.101, No.10, pp.1091-1094 (1975).
21.Dash, B.K., and Pise, P.J. “Effect of Compressive Load on Uplift Capacity of Model Piles” Journal of the Geotechnical and Geoenvironmental Engineering, Vol.129, No.11, pp.987-992 (2003).
22.Dickin, E.A., and Lyndon, A., “Pile Uplift and Pile Cap Interaction Studies in Sand” Proceedings of the 1994 International Conference on Centrifuge, pp.443-447 (1994).
23.Fioravante, V., Jamiolkowski, M., and Pedroni, S., "Modelling the Behaviour of Piles in Sand Subjected to Axial Load” Proceedings of the 1994 International Conference on Centrifuge, pp.455-460 (1994).
24.Gavin, K.G., and O’kelly, B.C. “Effect of Pile Capacity in Dense Sand” Journal of the Geotechnical and Geoenvironmental Engineering, Vol.133, No.1, pp.63-71 (2007).
25.Lehane, B.M., Jardine, R.J., Bond, A.J., and Frank, R., “Mechanisms of Shaft Friction in Sand from Instrumented Pile Tests” Journal of Geotechnical Engineering, Vol.119, No.1, pp.19-35 (1993).
26.Ismael, N.F., Member, “Analysis of Load Tests on Piles Driven Through Calcareous Desert Sands” Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.12, pp.905-908 (1999).
27.Ismael, N.F., and Klym, T.W., “Uplift and Bearing Capacity of Short Piles in Sand” Journal of the Geotechnical Engineering Division, ASCE, Vol.105, No.5, pp.579-594 (1979).
28.Kezdi, A., “Pile Foundations. Foundation Engineering Handbook, H.F. Winterkorn, and H.Y. Fang, eds., Van Nostrand Reinhold, co., New York., pp. 556-600 (1975).
29.Kulhawy, F.H., Trautmann, C.H., Beech, J.F., O’Rourke, T.D., Mcguire, W., Wood, W.A., and Capano, “Transmission Line Structure Foundation for Uplift-Compression Loading” Report, No. EL-2789, Electric Power Research Institute, Palo Alto, California (1983).
30.Kulhawy, F.H., “Drained Uplift Capacity of Drilled Shaft” Proceeding of the 8th International Conference on Soil Mechanics and Foundation Engineering, Vol.2, No.2, pp.167-172 (1985).
31.Levacher, D.R., and Sieffert, J.G., “Tests on Model Tension Piles” Journal of Geotechnical Engineering, Vol.11, No.12, pp. 735-748 (1984).
32.Mansure, C.I., and Hunter, A.H. “Pile Test-Arkansas River Project” Proceedings, ASCE, Vol.96, No.SM5, pp.1545-1582 (1970).
33.Meyerhof, G.G., and Adams, J.I., “The Ultimate Uplift Capacity of Foundation” Canadian Geotechnical Journal, Vol.5, No.4, pp.225-244 (1968).
34.Miyake, M., Wada, M., Satoh, T. and Katoh, Y., “Pullout Resistance of Steel Pipe Piles in Improved Ground” Proceedings of the 1994 International Conference on Centrifuge, pp.431-435 (1994).
35.Nicola, A.D., and Randolph, M.F., “Tensile and Compressive Shaft Capacity of Piles in Sand” Journal of Geotechnical Engineering, Vol. 119, No. 12, pp. 1952-1973 (1993).
36.Poulos, H.G., and Davis, E.H., Pile Foundation Analysis and Design. Wiley, New York (1980).
37.Randolph, M.F., Dolwin, J., and Beck, R.D., “Design of Driven Piles in Sand” Geotechnique, London, England (1993).
38.Tomlinson, M. J., Pile Design and Construction Practice (1977).
39.Vesic, A. S., “Bearing Capacity of Deep Foundations in Sand” Highway Research Board Record, No.39, pp.112-153 (1963).
40.Yet, N.S., Leung, C.F., and Lee, F.H., “Behaviour of Axially Loaded Piles in Sand” Proceedings of the 1994 International Conference on Centrifuge, pp.461-467 (1994).
41.Zhang, L., and Hu, T., “Modeling of Residual Stresses of Large Piles in Centrifuge” Proceedings of the International Conference on Centrifuge 91, pp.237-243 (1991).
指導教授 李崇正、黃俊鴻
(Chung-Jung Lee、Jin-Hung Hwang)
審核日期 2008-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明