以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:18 、訪客IP:52.15.217.86
姓名 倪學光(Hsueh-Kuang Ni) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 固態氧化物燃料電池金屬連接板之氧化研究
(Oxidation Behavior of Various Metallic Alloys for SOFC)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文是以鐵基(iron-based alloys)及鎳基(nickel-based alloys)為基底的金屬合金為研究對象,且皆為固態氧化物燃料電池(SOFC)之金屬連接板材,實驗是將材料置於SOFC運作的溫度800℃並通入空氣氣氛的操作環境下,比較鐵基(iron-based alloys)及鎳基(nickel-based alloys)合金的高溫氧化行為和熱膨脹係數間的差異。並使用掃描式電子顯微鏡(SEM)、電子微探儀(EPMA)及X-Ray繞射(XRD)等分析儀器來觀察氧化層之顯微組織。使用熱機械分析儀(TMA)及熱重分析儀(TGA)來量測熱膨脹係數舆氧化層的成長速率。研究發現氧化層皆含有相當比例的Cr元素,且表面會生成Cr-O的化合物,其中材料表面也會生成Mn–Cr–(Fe)spinel析出相與Cr2O3析出強化相,此外在氧化速率結果顯示出Crofer22與ZMG232等兩種鐵基合金相較於其他合金氧化速率較慢,有助於SOFC導電的穩定性。在鐵基(iron-based alloys)合金中Crofer22與ZMG232與SOFC其他元件的CTE也顯的最為接近與匹配。 摘要(英) Ten iron-based alloys and nickel-based alloys were subjected to oxidation treatment in hot air environment for various period of time. All of them were alloys that can be applied to interconnect of solid oxide fuel cell (SOFC). The resulted oxide scale was analyzed by scanning electron microscopy (SEM), electron probe micro analyzer (EPMA) and X-ray diffraction (XRD). The parabolic growth rates of oxide scale layer were verified from the thickness of oxide scales by thermal gravimetric analysis (TGA) depth profiles. The high operating temperature of SOFC requires that the coefficients of thermal expansion (CTE) of the components by thermal mechanical analysis (TMA) thermal stresses. In order to prevent the destruction in the structure of SOFC caused by thermal stress, the CTE of its component should be match when it is operated under high temperature. In study, all the alloys contain a certain amount of Cr, and Cr2O3 and (Mn, Fe)Cr2O4 spinel compound are produced on the surface oxide. Other spinels containing Cr, Mn, Fe, and Ni are also formed on it; the compositions depend on the composition of the steels and any other materials in contact with the interconnects. As a result, it is needed to understand the role of spinels in the oxidation of interconnects. The oxide scales on Crofer22 and ZMG232 exhibited the lowest area-specific resistance, and that is consistent with its slower oxidation kinetics. It stability of electrical conductivity will helpful in SOFC. The CTE of iron-based alloys (e.g. Crofer22 and ZMG232) are matched in SOFC other components. 關鍵字(中) ★ 金屬連接板
★ 燃料電池關鍵字(英) ★ interconnect
★ SOFC論文目次 摘要……………………………………………………………………I
Abstract ………………………………………………………………II
目錄……………………………………………………………………III
圖目錄…………………………………………………………………V
表目錄 ………………………………………………………………VIII
第一章 緒論
1.1 前言………………………………………………………………1
1.2 研究動機與方法…………………………………………………3
1.3 論文大綱…………………………………………………………4
第二章 燃料電池簡介
2.1 燃料電池簡介……………………………………………………5
2.1.1 燃料電池種類………………………………………………6
2.1.2 固態氧化物燃料電池原理…………………………………8
2.1.3 固態氧化物燃料電池架構…………………………………10
2.1.4 固態氧化物燃料電池結構設計……………………………11
2.2 SOFC材料及製程之選擇…………………………………………13
2.2.1 固態電解質…………………………………………………13
2.2.2 陰極…………………………………………………………16
2.2.3 陽極…………………………………………………………18
2.2.4 連接板需求…………………………………………………19
2.2.5 連接板材料種類……………………………………………20
第三章 實驗方法與儀器設備
3.1 實驗方法…………………………………………………………25
3.1.1 實驗流程圖…………………………………………………25
3.1.2 實驗試片備製………………………………………………26
3.1.3 熱膨脹系數量測……………………………………………27
3.1.4 連接板材高溫氧化環境模擬………………………………29
3.1.5 試片氧化斷面分析…………………………………………30
3.1.6 高溫氧化動力學……………………………………………31
3.2 實驗設備…………………………………………………………33
第四章 結果與討論
4.1 原材金相組織與成份分析………………………………………34
4.1.1 原材金相組織………………………………………………36
4.2 高溫模擬實驗……………………………………………………38
4.3 高溫模擬後之顯微結構…………………………………………39
4.4 高溫模擬後之氧化物分析………………………………………42
4.5 氧化斷面之SEM、EPMA及X光繞射分析 ……………………52
4.5.1 Crofer 22 …………………………………………………52
4.5.2 Equivalent ZMG232 ………………………………………54
4.5.3 304不鏽鋼及430 不鏽鋼…………………………………57
4.5.4 Inconel 718 ………………………………………………61
4.5.5 Superplastic Inconel718及ZMG232 ……………………63
4.5.6 Haynes 230 ………………………………………………66
4.5.7 Ni-19Si-3Nb-0.15B-0.1C(Vacuum and Air)………………67
4.6 高溫熱膨脹系數量測 ……………………………………………69
4.7 氧化動力學資料 …………………………………………………71
第五章 結論與未來工作
5.1 結論 ………………………………………………………………72
5.2 未來工作 …………………………………………………………73
參考文獻………………………………………………………………75參考文獻 [1]黃鎮江, 燃料電池,全華科技圖書股份有限公司,中華民國九十二年十一月初版。
[2]本間濁也, 王建義編譯, 圖解燃料電池百科,全華科技圖書股份有限公司,中華民國九十三年十月初版。
[3]F. Tietz , H.-P. Buchkremer and D. Sto¨ver, Solid State Ionics, 152– 153 (2002) , pp. 373– 381
[4]Proceeding of fuel cell,COE/TPC/ITRI,1(1999)
[5] R. J. Kee et al., SECA Workshop(2005)
[6] R. J. Gorte, J. M. Vohs, “Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons”, J. of Catalysis 216 (2003) , pp.477-486
[7]N. Q. Minh, “Ceramics Fuel Cells”, J. Am. Ceram. Soc., 76 [3] (1993) , pp.563-588.
[8]A. O. Iesenberg, “Fuel cell generator”, US Patent No.4395468 (1983).
[9]S. Linderoth, P.V. Hendriksen, M. Mogensen, N. Langvad, J.Mater.Sci. 31 (1996) 5077.
[10]J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis and L.J. Gauckler,
“Fabrication of thin electrolytes for second-generation solid oxide fuel cells”, Solid State Ionics 131 (2000) , pp. 79.
[11]T. Fukui, S. Ohara, M. Naito, K. Nogi, “Morphology control of the electrode for Solid Oxide Fuel Cells by using nanoparticles”, J. of Nanoparticle Res. 3 (2001), pp.171-174,
[12]S. P. Jiang and S. H. Chan, “A review of anode materials development in solid oxide fuel cells”, J. Mater. Sci. (2004) pp.4405 – 4439.
[13] W.Z. Zhu*, S.C. Deevi, Materials Research Bulletin, 38 (2003) pp.957–972
[14]Jeffrey W. Fergus, “Metallic interconnects for solid oxide fuel cells”, Materials Science and Engineering, A397, (2005), pp.271–283
[15]S.P.S. Badwal, Sol. Stat. Ion. 143, (2001), pp.39
[16]I.G. Wright, B.A. Pint, C.S. Simpson, P.F. Tortorelli, Mater. Sci. Forum. 251/254, (1997), pp.195
[17]P. Kofstad, “High Temperature Corrosion”, Elsevier Applied Sciences/Chapman and Hall, Lodon, (1998)
[18]W. Wersing, E.Ivers-Tiffee, M. Schiessl and H.Greiner, in “Proc. Int. Symp. Solid Oxide Fuel Cells”, O. Yamamoto, M. Dokiya and H. Tagawa(Eds), Nagoya, Japan, (1998), pp.33-42 13-14
[19]P. Kofstad, in “Proc. 17th Risφ Int. Symp. On Materials Science: High Temperature Electrochemistry, Ceramics and Metals”, F. Poulsen, N. Bonanos, S. Linderoth, M. Mogenson and B. Zachau-Christiansen (Eds), (1996), pp.55-66
[20]T. Malkow, U. V. D. Crone, A. M. Laptev, T. Koppitz, U. Breuer and W. J. Quadakkers, in “Solid Oxide Fuel Cells” (SOFC V), U. Stimming, S. C. Singhal, H. Tagawa and W. Lehnert (Eds), The Electrochemical Society Proceedings Series, Pennington, NJ, PV97-40, (1997), pp.1245
[21]W. J. Quadakkers, H. Greiner and W. Kock, in “Proc. of the First European Solid Oxide Fuel Cell Forum”, U. Bossel(Ed), European SOFC Forum, Dr. Ulf Bossel, Morgenacher Str. 2F, CH-5452 Oberrohrdorf, Switzerland, Vol.2, (1994), pp.525
[22]W.Z.Zhu and S.C.Deevi, “Development of interconnect materials for solid oxide fuel cells”, Materials Science and Engineering (A), Vol.348, (2003), pp.227-243
[23]T. Malkow, W. J. Quadakkers, L. Singheiser and H. Nickel, “Report Forschungszentrum Julich”, Julich, FRG, Jul-3589, ISSN 0944-2952, (1998)
[24]Y. Shiratori, F. Tietz, H.P. Buchkremer and D. Sto¨ver, Solid State Ionics, 164 (2003), pp.27-33指導教授 李雄(Shyong Lee) 審核日期 2007-7-16 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare