博碩士論文 943203091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.12.136.218
姓名 許峻瑋(Chun-wei Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 靜水壓力式生物反應器之設計與製作
(Hydrostatic pressure bioreactor system designed and validated)
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 組織工程是結合生命科學與工程原理的新興學門。越來越多的學者開始著手進行此方面的研究,其中又以幹細胞最吸引廣泛的注意。許多學者利用生物反應器提供循環壓力來促進幹細胞的分化,但是壓力對於幹細胞在細胞數與形狀上的影響卻很少提及。所以本文的研究方向主要是設計出一套靜水壓力式生物反應器系統,藉由探討定常壓力對於幹細胞在細胞數與形狀上的影響,來證明此系統的可行性。
實驗使用大鼠骨髓幹細胞並種植在塑膠玻片上,然後放入靜水壓力式生物反應器培養。總培養時間為3天,實驗分為系統加壓0、230、1000、5000 KPa,加壓形式為定壓,加壓時間點為培養期間的第2、3天,每天一小時。實驗結果證明以每天一小時的時間施加定常壓力230、1000、5000 KPa對於大鼠骨髓幹細胞在細胞數與形狀上並沒有顯著的影響。利用此靜水壓力式生物反應器,可以應用到更複雜的細胞測試,來探討在體外組織工程培養時壓力的影響。
摘要(英) Tissue engineering is a rising technology that combines the principles of engineering and life sciences. More and more investigators have begun study in this field. Among these studies, stem cells have attracted more attention. Many studies applied cyclic pressure by bioreactors to improve stem cell differentiation, but few studies have been conducted to exam the direct effects of pressure on the undifferentiated stem cells. The purpose of this thesis is to design a hydrostatic pressure bioreactor system, and ensure the system can be used in cell culture by examining the effect of constant pressure on the number and shape of growing stem cells.
Rat bone marrow stem cells were seeded onto the plastic coverslip, then cultured up to 3 days in the hydrostatic pressure bioreactor constructed in house. During the period, we applied constant pressure 0 , 230, 1000 and 5000 KPa for 1 hour daily on the second and third day respectively. The results demonstrated that the rat bone marrow stem cells, when exposed to the constant pressures were not significantly influenced in cell number and shape. With this hydrostatic pressure bioreactor, more sophisticated cell tests can be done to assess the effects of pressure on the tissue engineering cell development in vitro.
關鍵字(中) ★ 組織工程
★ 生物反應器
★ 靜水壓力
★ 骨髓幹細胞
關鍵字(英) ★ Hydroststic pressure
★ Tissue engineering
★ Bone marrow stem cells
★ Bioreactor
論文目次 中文摘要
英文摘要
誌謝
目錄.....................................................Ⅰ
圖目錄...................................................Ⅳ
第一章 緒論..............................................1
1.1 前言.................................................1
1.2 文獻回顧.............................................5
1.3 研究動機.............................................9
第二章 生物反應器之設計與製作...........................11
2.1 細胞培養部分.....................................11
2.1.1 培養室的設計................................12
2.1.2 薄膜轉接頭的設計............................13
2.1.3 玻片固定座的設計..................................13
2.2 壓力驅動部分.....................................14
2.2.1 組合三通管的設計............................16
2.2.2 壓力值的量測與計算..........................17
2.2.3 氣室的設計..................................19
2.3 儀器的擺放與管路的配置...........................20
2.3.1 儀器的擺放..................................21
2.3.2 管路與電線的配置............................21
第三章 實驗方法.........................................37
3.1 塑膠圓形玻片材料與尺寸...........................37
3.2 細胞來源.........................................37
3.3 玻片消毒與細胞種植...............................38
3.4 系統材料對細胞增生影響測試..........................39
3.5 利用生物反應器培養..................................41
3.5.1 生物反應器組裝.................................41
3.5.2 生物反應器培養條件.............................42
3.6 結果分析............................................43
3.6.1 計算細胞數.....................................43
3.6.2 顯微鏡觀察.....................................44
第四章 實驗結果與討論...................................52
4.1 加壓0 KPa........................................52
4.2 加壓230 KPa......................................53
4.3 加壓1000 KPa........................................54
4.4 加壓5000 KPa........................................55
第五章 結論與未來展望...................................73
5.1 結論.............................................73
5.2 未來展望.........................................74
參考文獻.................................................76
附錄A 實驗藥品及儀器....................................81
參考文獻 1. 陳誌遠, 2005, 軟骨細胞在組織工程支架之培養研究, 國立中央大學機械工程研究所碩士論文.
2. 劉貴助, 2006, 細胞在注流式生物反應器之生長研究, 國立中央大學機械工程研究所碩士論文.
3. Angele, P., Yoo, J.U., Smith, C., Mansour, J., Jepsen, K.J., Nerlich, M., and Johnstone, B., 2003. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. Journal of Orthopaedic Research 21, 451-457.
4. Atala, A., Bauer, S.B., Soker, S., Yoo, J.J., and Retik, A.B., 2006. Tissue-engineered autologous bladders for patients needing cytoplasty. Lancet 367, 1241-1246.
5. Butler, D.L., Goldstein, S.A., and Guilak, F., 2000. Functional tissue engineering: the role of biomechanics. Journal of Biomechanical Engineering 122, 570-575.
6. Carrier, R., Papadake, M., Rupnick, M., Schoen, F.J., and Vunjak-Novakovic, G., 1999. Cardiac tissue construct characterization. Biotechnology and Bioengineering 64, 580-589.
7. Carver, S.E., and Heath, C.A., 1999. Semi-continuous perfusion system for delivering intermittent physiological pressure to regenerating cartilage. Tissue Engineering 5, 1-11.
8. Freed, L.E., Vunjak-Novakovic, G., Marquis, J.C., and Langer, R., 1994b. Kinetics of chondrocyte growth in cell-polymer implants. Biotechnology and Bioengineering 43, 597-604.
9. Freed, L.E., Langer, R., Martin, I., Pellis, N.R. and Vunjak-Novakovic, G., 1997. Tissue engineering of cartilage in space. Proceedings of the National Academy of Sciences of the United States of America 94 , 13885-13890.
10. Freed, L.E., Guilak, F., Guo, X.E., Gary, M.L., Tranquillo, R., Holmes, J.W., Radisic, M., Sefton, M.V., Kaplan, D., and Vunjak-Novakovic, G., 2006. Advanced tools for tissue engineering: scaffold, bioreactor, and signaling. Tissue Engineering 12, 3285-3301.
11. Glucksmann, A., 1939. Studies on bone mechanics in vitro: Ⅱ, The role of tension and pressure in chondrogenesis. Anatomical Record 73, 39-56.
12. Goldstein, A.S., Juarez, T.M., Helmke, C.D., Gustin, M.C., and Mikos, A.G., 2001. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22, 1279-1288.
Griffith, L.G., and Naughton, G., 2002. Tissue Engineering-current challenges and expanding opportunities. Science 295, 1009-1014.
13. Hodge, W.A., Fijan, R S., Carlson, K.L., Burgess, R.G., Harris, W.H., and Mann, R.W., 1986. Contect pressures in the human hip joint measured in vivo. Proceedings of the National Academy of Sciences of the United States of America 83, 2879-2883.
14. Kusama, K., Donegan, W.I., and Samter, T.G., 1989. An investigation of colon cancer associated with urinary diversion. Diseases of Colon and Rectum 32, 694- 697.
15. Langer, R., and Vacanti, J.P., 1993. Tissue engineering. Science 260, 920-926.
16. Langer, R., 2000. Tissue engineering. Molecular Therapy 1, 12-15.
17. Luo, Z.J., and Seedhom, B.B., 2007. Light and low-frequency pulsatile hydrostatic pressure enhances extracellular matrix formation by bone marrow mesenchymal cells: an in-vitro study with special reference to cartilage repair. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine 221,499-507.
18. Mahmoudifar, N., and Doran, P.M., 2005. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors. Biomaterials 26, 7012-7024.
19. Martin, I., Wendt, D., and Heberer, M., 2004. The role of bioreactors in tissue engineering. Trends in Biotechnology 22, 80-86.
20. Mizuno, S., Tateishi, T., Ushida, T., and Glowacki, J., 2002. Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. Journal of Cellular Physiology 193, 319-327.
21. Nagatomi, J., Arulanandam, B.P., Meunier, A., and Bizios, R., 2002. Effect of cyclic pressure on bone marrow cell cultures. Journal of Biomechanical Engineering 124, 308-314.
22. Pazzano, D., Mercier, K.A., Moran, J.M., Fong, S.S., DiBiasio, D.D., Rulfs, J.X. Kohles, S.S., and Bonassar, L.J., 2000. Comparison of chondrogensis in static and perfusion bioreactor culture. Biotechnology Progress 16, 893-896.
23. Rodan, G.A., Bourret, L.A., Harvey, A., and Mensi, T., 1975a. 3’, 5’-cyclic AMP and 3’, 5’-cyclic GMP mediators of the mechanical effects on bone remodeling. Science 189, 467-469.
24. Schumann, D., Kujat, R., Nerlich, M., and Angele, P., 2006. Mechanobiological conditioning of stem cells for cartilage tissue engineering. Bio-Medical Materials and Engineering 16, S37-S52.
25. Smith, R.L., Carter, D.R., and Schurman, D.J., 2004. Pressure and shear differentially alter human articular chondrocyte metabolism. Clinical Orthopaedics and related Reseach 427S, S89-S95.
26. Tuan, R.S., Boland, G., and Tuli, R., 2003. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Reserch and Therapy 5, 32-45.
27. Vunjak-Novakovic, G. et al., 1996. Effect of mixing on the composition and morphology of tissue-engineered cartilage. American Institute of Chemical Engineers Journal 42, 850-860.
28. Vunjak-Novakovic, G., Obradovic, B., Martin, I., Bursac, P.M., Langer, R., and Freed, L.E., 1998. Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnology Progress 14, 193-202.
29. Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A.J., Langer, R., and Freed, L.E., 1999. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. Journal of Orthopaetic Research.17, 130-138.
30. Walboomers, X.F., Elder, S.E., Bumgardner, J.D., and Jansen, J.A., 2006. Hydrodynamic compression of young and adult rat osteoblast-like cells on titanium fiber mesh. Journal of Biomedical Materials Research. Part A, 76 , 16-24.
31. Watanabe, S., Inagaki, S., Kinouchi, I., Takai, H., Masuda, Y., and Mizuno, S., 2005. Hydrostatic pressure/perfusion culture system designed and validated for engineering tissue. Journal of Bioscience and Bioengineering 100, 105-111.
32. Weissman, I.L., 2000. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287, 1442-1446.
33. Wendt, D., Marsano, A., Jakob, M., Heberer, M., and Matin, I., 2003. Oscillating perfusion of suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnology and Bioengineering 84, 205-214.
34. Zhang, W.J., Liu, W., and Cao, Y., 2007. Tissue engineering of blood vessel. Journal of Cellular and Molecular Medicine 11, 945-957.
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明