參考文獻 |
[1] World Health Statistics 2012. Geneva, World Health Organization, 2012.
[2] L.Tabar,M.F.Yen,B.Vitak,H.T.Chen,R.A.Smith,andS.W.Duffy,“Mammography service screening and mortality in breast cancer patients: 20-year followup before and after introduction of screening,” Lancet 361, 1405–1410 (2003).
[3] J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, “Ten- year risk of false positive screening mammograms and clinical breast examinations,” The New England Journal of Medicine 338, 1089–1096 (1998).
[4] P. T. Huynh, A. M. Jarolimek, and S. Day, “The false-negative mammogram,” Radio- graphics 18, 1137–1154 (1998).
[5] A. Gibson, and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009).
[6] D.R.Leff,O.J.Warren,L.C.Enfield,A.Gibson,T.Athanasiou,D.K.Patten,J.Hbden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008).
[7] J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experi- mental techniques,” Phys. Med. Biol. 42, 825-840 (1997).
[8] H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073- 3093 (2009).
[9] S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Problems 25, 123010 (2009).
[10] T.Durduran,R.Choe,W.B.Baker,andA.G.Yodh,“Diffuseopticsfortissuemonitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[11] B.W.Pogue,M.S.Patterson,H.Jiang,andK.D.Paulsen,“Initialassessmentofasimple system for frequency-domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709– 1729 (1995).
[12] S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[13] K. D. Paulsen, and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[14] M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of het- erogeneous turbid media by frequency-domain diffusing-photon tomography,” Optics Letters 20, 426–428 (1995).
[15] M. A. O’Leary, “Imaging with diffuse photon density waves,” Dissertation in Physics, University of Pennsylvania (1996).
[16] A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image recon- struction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).
[17] S.R.Arridge,“Opticaltomographyinmedicalimaging,”InverseProblems15,R41–R93 (1999).
[18] H.Dehghani,M.E.Eames,P.K.Yalavarthy,S.C.Davis,S.Srinivasan,C.M.Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2008).
[19] D.A.Boas,A.M.Dale,andM.A.Franceschini,“Diffuseopticalimagingofbrainactiva- tion: approaches to optimizing image sensitivity, resolution, and accuracy,” NeuroImage 23, S275–S288 (2004).
[20] A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers 18, 313–337 (2002).
[21] A. Neumaier, “Solving ill-conditioned and singular linear systems: a tutorial on regular- ization,” SIAM Rev. 40, 636–666 (1998).
[22] Q.Zhao,L.Ji,andT.Jiang,“Improvingperformanceofreflectancediffuseopticalimag- ing using a multicentered mode,” J. Biomed. Opt. 11, 064019 (2006).
[23] K. Uludag, J. Steinbrink, A. Villringer, and H. Obrig, “Separability and cross talk: opti- mizing dual wavelength combinations for near-infrared spectroscopy of the adult head,” NeuroImage 22, 583–589 (2004).
[24] J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13, 041305 (2008).
[25] A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, “Four- wavelength time-resolved optical mammography in the 680-980-nm range,” Optics Let- ters 28, 1138–1140 (2003).
[26] A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. Hillman, S. Arridge, and A. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse op- tical tomography,” Optics Letters 28, 2339–2341 (2003).
[27] M. E. Eames, J. Wang, B. W. Pogue, and H. Dehghani, “Wavelength band optimiza- tion in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden,” J. Biomed. Opt. 13, 054037 (2008).
[28] B.BrendelandT.Nielsen,“Selectionofoptimalwavelengthsforspectralreconstruction in diffuse optical tomography,” J. Biomed. Opt. 14, 034041 (2009).
[29] Q. Zhang, T. Brukilacchio, A. Li, J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[30] Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three- dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13, 044006 (2008).
[31] M.Holboke,B.Tromberg,X.Li,N.Shah,J.Fishkin,D.Kidney,J.Butler,B.Chance,and A. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[32] Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization,” Neoplasia 10, 1028–1040 (2008).
[33] Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinki, “Trans-rectal ultrasound-coupled near-infrared opti- cal tomography of the prostate part ii: Experimental demonstration,” Opt. Express 16, 17505–17520 (2008).
[34] V.Ntziachristos,A.Yodh,M.Schnall,andB.Chance,“MRI-guideddiffuseopticalspec- troscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[35] H. Dehghani, B. Pogue, B. Brooksby, S. Srinivasan, and K. Paulsen, “Image reconstruc- tion strategies using dual modality MRI-NIR data,” in IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2006), pp. 682–685.
[36] P. Hiltunen, S. J. D. Prince, and S. Arridge, “A combined reconstruction-classification method for diffuse optical tomography,” Phys. Med. Biol. 54, 6457–6476 (2009).
[37] A. Li, G. Boverman, Y. Zhang, D. Brooks, E. Miller, M. Kilmer, Q. Zhang, E. Hillman, and D. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical to- mography,” Appl. Opt. 44, 1948–1956 (2005).
[38] S. Srinivasan, B. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. Wells, S. Poplack, and K. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat. 4, 513–526 (2005).
[39] J. Kaipio, V. Kolehmainen, M. Vauhkonen, and E. Somersalo, “Inverse problems with structural prior information,” Inverse Probl. 15, 713–729 (1999).
[40] A. Hielscher and S. Bartel, “Parallel programming of gradient-based iterative image re- construction schemes for optical tomography,” Comput. Methods Programs Biomed. 73, 101–113 (2004).
[41] A. Douiri, M. Schweiger, J. Riley, and S. R. Arridge, “Anisotropic diffusion regulariza- tion methods for diffuse optical tomography using edge prior information,” Meas. Sci. Technol. 18, 87–95 (2007).
[42] B. Pogue, T. McBride, J. Prewitt, U. Osterberg, and K. Paulsen, “Spatially variant regu- larization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[43] H. Niu, P. Guo, L. Ji, Q. Zhao, and T. Jiang, “Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization method,” Opt. Express 16, 12423–12434 (2008).
[44] N.Cao,A.Nehorai,andM.Jacob,“Imagereconstructionfordiffuseopticaltomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express 15, 13695–13708 (2007).
[45] Y. Pei, H. Graber, and R. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in dc optical tomography,” Opt. Express 9, 97–109 (2001).
[46] Y.Xu,X.Gu,T.Khan,andH.Jiang,“Absorptionandscatteringimagesofheterogeneous scattering media can be simultaneously reconstructed by use of dc data,” Appl. Opt. 41, 5427–5437 (2002).
[47] M. E. Eames and H. Dehghani, “Wavelength dependence of sensitivity in spectral dif- fuse optical imaging: effect of normalization on image reconstruction,” Opt. Express 16, 17780–17791 (2008).
[48] M. C. Pan, C. H. Chen, L. Y. Chen, M. C. Pan, and Y. M. Shyr, “Highly resolved diffuse optical tomography: a systematic approach using high-pass filtering for value-preserved images,” J. Biomed. Opt. 13, 024022 (2008).
[49] P. J. Cassidy and G. K. Radda, “Molecular imaging perspectives,” J. R. Soc. Interface 2, 133-144 (2005).
[50] V.B.S.PrasathandA.Singh,“Ahybridconvexvariationalmodelforimagerestoration,” Applied Mathematics and Computation 215, 3655-3664 (2010).
[51] M. Rivera and J. L. Marroquin, “Adaptive rest condition potentials: first and second order edge-preserving regularization,” Computer Vision and Image Understanding 88, 76-93 (2002).
[52] D. Lazzaro and L. B. Montefusco, “Edge-preserving wavelet thresholding for image de- noising,” Journal of Computational and Applied Mathematics 210, 222-231 (2007).
[53] A. H. Delaney and Y. Bresler, “Globally convergent edge-preserving regularized recon- struction: an application to limited-angle tomography,” IEEE Transactions on Image Processing 7, 204-221 (1998).
[54] R. Pan and S. J. Reeves, “Efficient Huber-Markov edge-preserving image restoration,” IEEE Transactions on Image Processing 15, 3728-3735 (2006).
[55] H. Zhang, Z. Shang, and C. Yang, “A non-linear regularized constrained impedance in- version,” Geophysical Prospecting 55, 819-833 (2007).
[56] H.Zhang,Z.Shang,andC.Yang,“Adaptivereconstructionmethodofimpedancemodel with absolute and relative constraints,” Journal of Applied Geophysics 67, 114-124 (2009).
[57] G. Vicidomini, P. Boccacci, A. Diaspro, and M. Bertero, “Application of the split- gradient method to 3D image deconvolution in fluorescence microscopy,” Journal of Microscopy 234, 47-61 (2009).
[58] X. Gu and L. Gao, “A new method for parameter estimation of edge-preserving regular- ization in image restoration,” Journal of Computational and Applied Mathematics 225, 478-486 (2009).
[59] R.Zanella,P.Boccacci,L.Zanni,andM.Bertero,“Efficientgradientprojectionmethods for edge-preserving removal of Poisson noise,” Inverse Problems 25, 045010 (2009).
[60] A.Jalobeanu,L.Blance-Feraud,andJ.Zerubia,“Hyperparameterestimationforsatellite image restoration using a MCMC maximum-likelihood method,” Pattern Recognition 35, 341-352 (2002).
[61] P. Lobel, L. Blanc-Feraud, Ch. Pichot, and M. Barlaud, “A new regularization scheme for inverse scattering,” Inverse Problems 13, 403-410 (1997).
[62] J.M.Bardsley,andJ.Goldes,“Aniterativemethodforedge-preservingMAPestimation when data-noise is Poisson,” SIAM J. Sci. Comput. 32, 171-185 (2010).
[63] B. Omrane, Y. Goussard, and J. Laurin, “Constrained inverse near-field scattering using high resolution wire grid models,” IEEE Transactions on Antennas and Propagation 59, 3710-3718 (2011).
[64] N. Villain, Y. Goussard, J. Idier, and M. Allain, “Three-dimensional edge-preserving image enhancement for computed tomography,” IEEE Transactions on Medical Imaging 22, 1275-1287 (2003).
[65] D. F. Yu and J. A. Fessler, “Three-dimensional non-local edge-preserving regulariza- tion for PET transmission reconstruction,” Proc. IEEE Nuclear Science Symp. Medical Imaging Conf. 2, 1566-1570 (2000).
[66] C. Samson, L. Blanc-Feraud, G. Aubert, and J. Zerubia, “A variational model for im- age classification and restoration,” IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 460-472 (2000).
[67] R. Casanova, A. Silva, and A. R. Borges, “MIT image reconstruction based on edge- preserving regularization,” Physiol. Meas. 25, 195-207 (2004).
[68] L.Blanc-FeraudandM.Barlaud,“Edgepreservingrestorationofastrophysicalimages,” Vistas in Astronomy 40, 531-538 (1996).
[69] S. Teboul, L. Blanc-Feraud, G. Aubert, and M. Barlau, “Variational approach for edge- preserving regularization using coupled PDE’s,’ IEEE Transactions on Image Processing 7, 387-397 (1998).
[70] S. Rivetti, N. Lanconelli, R. Campanini, M. Bertolini, G. Borasi, A. Nitrosi, C. Danielli, L. Angelini, S. Maggi, “Comparison of different commercial FFDM units by means of physical characterization and contrast-detail analysis,” Med. Phys. 33, 4198-4209 (2006).
[71] B. Cederstrom, U. Streubuhr, “Comparison of photo-counting to storage phosphor plate mammography using contrast-detail phantom analysis,” Nucl. Instrum. Methods Phys. Res. Sect. A 580, 1101-1104 (2007).
[72] S. Rivetti, N. Lanconelli, M. Bertolini, A. Nitrosi, A. Burani, D. Acchiappati, “Compar- ison of different computed radiography systems: physical characterization and contrast detail analysis,” Med. Phys. 37, 440-448 (2010).
[73] G. Borasi, E. Samei, M. Bertolini, A. Nitrosi, D. Tassoni, “Contrast-detail analysis of three flat panel detectors for digital radiography,” Med. Phys. 33, 1707-1719 (2006).
[74] W. J. H. Veldkamp, L. J. M. Kroft, M. V. Boot, B. J. A. Mertens, J. Geleijns, “Contrast- detail evaluation and dose assessment of eight digital chest radiography systems in clin- ical practice,” Eur. Radiol. 16, 333-341 (2006).
[75] P. F. Judy, R. G. Swensson, R. D. Nawfel, K. H. Chan, S. E. Seltzer, “Contrast-detail curves for liver CT,” Med. Phys. 19, 1167-1174 (1992).
[76] E. Samei, N. T. Ranger, D. M. Delong, “A comparative contrast-detail study of five medical displays,” Med. Phys. 35, 1358-1364 (2008).
[77] M. Yamaguchi, H. Fujita, Y. Bessho, T. Inoue, Y. Asai, K. Murase, “Investigation of op- timal display size for detecting ground-glass opacity on high resolution computed tomog- raphy using a new digital contrast-detail phantom,” Eur. J. Radiol. 80, 845-850 (2011).
[78] T.J.Hall,M.F.Insana,N.M.Soller,L.A.Harrison,“Ultrasoundcontrast-detailanalysis: a preliminary study in human observer performance,” Med. Phys. 20, 117-127 (1993).
[79] A. Pascoal, C. P. Lawinski, I. Honey, P. Blake, “Evaluation of a software package for automated quality assessment of contrast detail images — comparison with subjective visual assessment,” Phys. Med. Biol. 50, 5743-5757 (2005).
[80] B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, K. D. Paulsen, “Im- age analysis methods for diffuse optical tomography,” J. Biomed. Opt. 11, 033001-1-16 (2006).
[81] B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast- detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693-2700 (2000).
[82] S. C. Davis, B. W. Pogue, H. Dehghani, K. D. Paulsen, “Contrast-detail analysis charac- terizing diffuse optical fluorescence tomography image reconstruction,” J. Biomed. Opt. 10, 050501-1-3 (2005).
[83] H. R. Ghadyani, S. Srinivasan, B. W. Pogue, K. D. Paulsen, “Characterizing accuracy of total hemoglobin recovery using contrast-detail analysis in 3D image-guided near in- frared spectroscopy with the boundary element method,” Opt. Express 18, 15917-15935 (2010).
[84] M. Pan, L. Chen, M. Pan, and C. Chen, “Inverse solution regularized with the edge- preserving constraint for NIR DOT,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDPBMD1.
[85] L. Chen, M. Pan, and M. Pan, “Frequency-domain diffuse optical tomography imple- mented with edge-preserving regularization,” in Biomedical Optics, OSA Technical Di- gest (CD) (Optical Society of America, 2010), paper BME7.
[86] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, “Deterministic edge- preserving regularization in computed imaging,” IEEE Transactions on Image Processing 6, 298–311 (1997).
[87] L. Y. Chen, M.-Chun Pan, and M.-Cheng Pan, “Implementation of edge-preserving reg- ularization for frequency-domain diffuse optical tomography,” Applied Optics 51, 43-54 (2012).
[88] S.R.Arridge,andM.Schweiger,“Photon-measurementdensityfunctions.Part2:Finite- element-method calculations,” Applied Optics 34, 8026–8037 (1995).
[89] M. C. Pan, C. H. Chen, M. C. Pan, and Y. M. Shyr, “Near infrared tomographic sys- tem based on high angular resolution mechanism- design, calibration, and performance,” Measurement 42, 377–389 (2009).
[90] K. M. Case, and P. F. Zweifel, Linear Transport Theory, Addison-Wesley, Boston, 1967.
[91] D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid me- dia: theory and biomedical applications,” Dissertation in Physics, University of Penn- sylvania (1996).
[92] G. B. Arfken, and H. J. Weber, Mathematical Methods for Physicists, Academic Press, New York, 2005.
[93] K. Furutsu, and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[94] H. Jiang, Diffuse Optical Tomography: Principles and Applications, CRC Press, Boca Raton, 2010.
[95] S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Im- proved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161–1171 (2004). |