參考文獻 |
[1] http://www.blindness.org
[2] http://webvision.med.utah.edu
[3] H. Kolb, “How the retina works,” American Scientist, vol. 91, pp. 28-35, Jan.-Feb. 2003.
[4] E. Zrenner, “Will retinal implants restore vision?,” Science, vol. 295, no. 5557, pp. 1022-1025, Feb. 2002.
[5] J. D. Weiland and M. S. Humayun, “Intraocular retinal prosthesis,” IEEE Engineering in Medicine and Biology Magazine, vol. 25, pp. 60-66, Sep.-Oct. 2006.
[6] M. S. Humayun, E. de Juan Jr., G. Dagnelie, R. J. Greenberg, R. H. Propst, and H. Phillips, “Visual perception elicited by electrical stimulation of the retina in blind humans,” Archives Ophthalmology, vol. 114, no. 1, pp. 40-46, Jan. 1996.
[7] M. S. Humayun, E. de Juan Jr., J. D. Weiland, G. Dagnelie, S. Katona, R. Greenberg, and S. Suzuki, “Pattern electrical stimulation of the human retina,” Vision Research, vol. 39, pp. 2569-2576, 1999.
[8] J. D. Weiland, D. Yanai, M. Mahadevappa, R. Williamson, B. V. Mech, G. Y. Fujii, J. Little, R. J. Greenberg, E. de Juan Jr., and M. S. Humayun, “Electrical stimulation of retina in blind humans,” IEEE Engineering in Medicine and Biology Society Conference, vol. 3, pp. 2021-2022, Sep. 2003.
[9] K. Cha, K. W. Horch, R. A. Normann, and D. K. Boman, “Reading speed with a pixelized vision system,” Journal of the Optical Society of America A, vol.5 , no. 5, pp. 673-677, May 1992.
[10] R. W. Thompson, G. D. Barnett, M. S. Humayun, and G. Dagnelie, “Facial recognition using simulated prosthetic pixelized vision,” Investigative Ophthalmology and Visual Science, vol. 44, no. 11, pp. 5035-5042, Nov. 2003.
[11] K. Cha, K. Horch, and R. A. Normann, “Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system,” Annals of Biomedical Enguneering, vol. 20, no. 4, pp. 439-449, Jul. 1992.
[12] P. Hossain, I. W. Seetho, A. C. Browning, and W. M. Amoaku, “Artificial means for restoring vision,” BMJ, vol. 330, pp. 30-33, Jan. 2005.
[13] M. Sivaprakasam, W. Liu, G. Wang, J. D. Weiland, and M. S. Humayun, “Architecture tradeoffs in high-density microstimulators for retinal prosthesis,” IEEE Transactions on Circuits and Systems, vol. 52, no. 12, pp. 2629-2640, Dec. 2005.
[14] S. K. Kelly and J. Wyatt, “A power-efficient voltage-based neural tissue stimulator with energy recovery,” IEEE Solid-State Circuits Conference, vol. 1, pp. 228-524, Feb. 2004.
[15] J. Simpson and M. Ghovanloo, “An experimental study of voltage, current, and charge controlled stimulation front-end circuitry,” IEEE International Symposium on Circuits and Systems, pp. 325-328, May 2007.
[16] M. S. Humayun , J. D. Weiland, G. Y. Fujii, R. Greenberg, R. Williamson, J. Little, B. Mech, V. Cimmarusti, G. V. Boemel, G. Dagnelie, and E. de Juan Jr., “Electrical stimulus parameters for visual perception in blind humans with retinal prosthetic implants,” Vision Research, vol. 43, pp. 2573-2581, Feb. 2003.
[17] S. Suzuki, M. S. Humayun, J. D. Weiland, S. J. Chen, E. Margalit1, D. V. Piyathaisere, and E. de Juan Jr., “Comparison of electrical stimulation thresholds in normal and retinal degenerated mouse retina,” Japanese Journal of Ophthalmology, vol. 48, no. 4, pp. 345-349, Feb. 2004.
[18] J. S. Shyu, M. Maia, J. D. Weiland, T. O’Hearn, S. J. Chen, E. Margalit, S. Suzuki, and M.S. Humayun, “Electrical stimulation in isolated rabbit retina,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, pp. 290-298, Sep. 2006.
[19] W. Liu, M. Sivaprakasam, G. Wang, M. Zhou, J. Garnacki, J. Lacoss, and J. Wills, “Implantable biomimetic microelectronic systems design,” IEEE Engineering in Medicine and Biology Magazine, vol. 24, pp. 66-74, Sep.-Oct. 2005.
[20] G. Lesbros and M. Sawan, “Multiparameters monitoring for long term in-vivo characterization of electrode-tissues contacts,” IEEE Electronics, Circuits and Systems Conference, pp. 25-28, Dec. 2006.
[21] http://www.tsmc.com/download/enliterature/html-newsletter/April04/Quality&Reliability/index.html
[22] A. J. Annema , G. J. G. M. Geelen, and P. C. de Jong, “5.5-V I/O in a 2.5-V 0.25-μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 528-538, Mar. 2001.
[23] D. Seo, H. Dabag, Y. Guo, M. Mishra, and G. H. McAlister, “High-voltage-tolerant analog circuits design in deep sub-micron CMOS technologies,” IEEE Transactions on Circuits and Systems, vol. 54, pp. 2159-2166, 2007.
[24] S. Rajapandian, K. Shepard, P. Haxucha, and T. Karnik, “High-tension power delivery: Operating 0.18μm CMOS digital logic at 5.4V,” IEEE Solid-State Circuits Conference, vol. 1, pp.298-599, Feb. 2005.
[25] R. J. Baker, CMOS Circuit Design, Layout, and Simulation. Piscataway, NJ : Wiley IEEE Press, 2005.
[26] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[27] M. Sivaprakasam, W. Liu, M.S. Humayun, and J. D. Weiland, “A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 763-771, Mar. 2005.
[28] S. C. DeMarco, W. Liu, P. R. Singh, G. Lazzi, M.S. Humayun, and J.D. Weiland, “An arbitrary waveform stimulus circuit for visual prostheses using a low-area multibias DAC,” IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1679-1690, Oct. 2003.
[29] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
[30] A. P. Chu, K. Morris, R. J. Greenberg, and D. M. Zhou, “Stimulus induced pH changes in retinal implant,” IEEE Engineering in Medicine and Biology Society Conference, vol. 2, pp. 4160-4162, Sep. 2004.
[31] A. B. Majji, M. S. Humayun, J. D. Weiland, S. Suzuki, S. A. D’Anna , and E. de Juan Jr., “Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs,” Investigative Ophthalmology and Visual Science, vol. 40, no. 9, pp. 2073-2081, Aug. 1999.
[32] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Oxford University Press, 2002.
[33] M. Burns and G. W. Roberts, An Introduction to Mixed-Signal IC Test and Measurement. New York: Oxford University Press, 2001.
[34] M. Mahadevappa, J. D. Weiland, D. Yanai, I. Fine, R. J. Greenberg, and M. S. Humayun, “Perceptual thresholds and electrode impedance in three retinal prosthesis subjects,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13, no. 2, pp. 201- 206, Jun. 2005.
[35] S. Smith, Microelectronic Circuits. USA: Oxford University Press, 1997.
[36] A. Harb, Y. Hu, and M. Sawan, “Low-power CMOS interface for recording and processing very low amplitude signals,” Analog Integrated Circuits and Signal Processing, vol. 39, pp. 39-54, 2004.
[37] C. H. Kuo, S. L. Chen, and S. I. Liu, “Magnetic-field-to-digital converter using PWM and TDC techniques.” IEE Proceedings of Circuits, Devices and Systems, vol. 153, no. 3, pp. 247-252, Jun. 2006.
[38] P. Chen, S. L. Liu, and J. Wu, “A CMOS pulse-shrinking delay element for time interval measurement,” IEEE Transactions on Circuits and Systems, vol. 47, no. 9, pp. 954-958, Sep. 2000.
[39] T. A. Demassa and Z. Ciccone, Digital Integrated Circuits. New York: Wiley, 1996. |