博碩士論文 945201016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.216.174.32
姓名 呂俊葦(Jiun-Wei Lu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於視覺輔具的電刺激器與阻抗量測電路之分析與設計
(Analysis and Design of Electrical Stimulator and Impedance Measurement Circuitry for Visual Prostheses)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 光耦合隔離系統 之接收端晶片電路設計與實現
★ 應用於光耦合隔離系統之發送端雜訊整形 類比轉數位轉換器★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 世界上有百萬以上的人,因為色素性視網膜炎以及老年性黃斑部退化疾病而導致失明。這兩種疾病導致感光細胞發生不可逆的退化,使得視覺傳輸路徑的第一站無法正常地連結。根據研究發現,患者可以藉由視網膜或視覺皮質區上的電刺激,成功地形成視覺感知。這種產生電刺激的人工裝置稱作視覺輔具,通常是長期的植入在眼睛或是大腦上,取代受損的組織,提供患者日常生活需要的視覺功能。目前使用視覺輔具來重建盲人的視覺,對於神經復健工程是相當重要的研究。
本論文的研究,著重於植入式刺激器以及量測系統的考量與設計。為了刺激盲人剩餘的神經細胞,設計六位元的類比數位轉換器,以調整輸出電流的波形,使得患者可以得到基本的景像辨別能力。此外,文中提出新型的量測電路,觀察植入之後電極組織介面的狀況,這將有利於評估刺激成效以及刺激參數的調整。
摘要(英) More than millions of people worldwide are suffering from blindness as a result of retinitis pigmentosa (RP) and age-related macular degradation (AMD). Both of them result in irreversible photoreceptor degeneration, disconnecting the first station of vision from normal pathway. So far, it has been demonstrated that applying electrical stimulation pulse to diseased retina (or directly stimulating the primary visual cortex) can lead to a successful elicitation in visual perception. Such a stimulation pulse can be generated by a man-made device called visual prosthesis. In general, the device is chronically implanted inside the eye or brain to serve as a substitute for the impaired tissue, such that the sufferer can perform several visual tasks in daily life. Restoring sight of vision for blind with visual prosthesis has been of considerable importance in today’s neural rehabilitation engineering.
Motivated by this, we present in this thesis the considerations and design of implantable stimulator and impedance measurement system. In order to activate the targeted residual neural cells of the blind, a 6-bit digital-to-analog converter (DAC) has been designed. It can be in charge of outputting a stimulus waveform, thereby providing the patient basic discrimination regarding the scene. In addition, a new architecture of impedance measurement system is proposed to diagnosis the status of electrode-tissue interface after implantation. It is also useful for evaluating the effect on stimulation and adjustment of stimulus parameters.
關鍵字(中) ★ 阻抗量測
★ 電刺激器
★ 電位轉移器
★ 視覺輔具
關鍵字(英) ★ impedance measurement
★ electrical stimulator
★ level shifter
★ visual prothesis
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 動機與背景 1
1-2 研究目的 2
1-3 內容大綱 3
第二章 使用視覺輔具重建人類視覺 4
2-1 視覺的形成 4
2-2 使用電刺激產生視覺 6
2-3 視力 6
2-4 電刺激之部位 8
2-5 電刺激的模式 10
2-6 電刺激參數 12
第三章 視覺輔具之系統 14
3-1 視覺輔具系統 14
3-1-1 無線視覺輔具系統 15
3-2 系統電壓規劃 16
3-2-1 電位轉移器 17
3-2-2 電晶體的崩潰 17
3-2-3 形式一的電位轉移器 18
3-2-4 形式二的電位轉移器 20
3-2-5 使用Triple well製程 24
3-3 偏壓電路設計 26
第四章 刺激器之設計 28
4-1 電流鏡的評估 28
4-1-1 基本電流鏡 28
4-1-2 電流鏡比較 30
4-2 數位類比轉換器 33
4-2-1 二位元權重之數位類比轉換器 33
4-2-2 使用多偏壓產生器之數位類比轉換器 34
4-2-3 溫度計碼 38
4-3 殘餘電荷的消除 40
4-4 刺激器電路設計 41
4-4-1 刺激器電路模擬結果 43
第五章 阻抗量測系統設計 47
5-1 阻抗量測應用於植入式系統 47
5-2 儀表放大器 48
5-2-1 傳統的儀表放大器 48
5-2-2 電流模式的儀表放大器 50
5-3 基本類比數位轉換器的介紹 52
5-4 提出的量測系統 55
5-4-1 電壓脈波轉換器 56
5-4-2 時間數位轉換器 60
5-4-3 電路整體考量 64
5-5 電路模擬結果 68
5-5-1 儀表放大器的模擬結果 68
5-5-2 輸入電壓轉換成脈波寬度的模擬結果 69
5-5-3 時間數位轉換器的模擬結果 71
5-5-4 規格列表 73
第六章 結論與未來展望 74
6-1 結論 74
6-2 未來展望 74
參考文獻 76
參考文獻 [1] http://www.blindness.org
[2] http://webvision.med.utah.edu
[3] H. Kolb, “How the retina works,” American Scientist, vol. 91, pp. 28-35, Jan.-Feb. 2003.
[4] E. Zrenner, “Will retinal implants restore vision?,” Science, vol. 295, no. 5557, pp. 1022-1025, Feb. 2002.
[5] J. D. Weiland and M. S. Humayun, “Intraocular retinal prosthesis,” IEEE Engineering in Medicine and Biology Magazine, vol. 25, pp. 60-66, Sep.-Oct. 2006.
[6] M. S. Humayun, E. de Juan Jr., G. Dagnelie, R. J. Greenberg, R. H. Propst, and H. Phillips, “Visual perception elicited by electrical stimulation of the retina in blind humans,” Archives Ophthalmology, vol. 114, no. 1, pp. 40-46, Jan. 1996.
[7] M. S. Humayun, E. de Juan Jr., J. D. Weiland, G. Dagnelie, S. Katona, R. Greenberg, and S. Suzuki, “Pattern electrical stimulation of the human retina,” Vision Research, vol. 39, pp. 2569-2576, 1999.
[8] J. D. Weiland, D. Yanai, M. Mahadevappa, R. Williamson, B. V. Mech, G. Y. Fujii, J. Little, R. J. Greenberg, E. de Juan Jr., and M. S. Humayun, “Electrical stimulation of retina in blind humans,” IEEE Engineering in Medicine and Biology Society Conference, vol. 3, pp. 2021-2022, Sep. 2003.
[9] K. Cha, K. W. Horch, R. A. Normann, and D. K. Boman, “Reading speed with a pixelized vision system,” Journal of the Optical Society of America A, vol.5 , no. 5, pp. 673-677, May 1992.
[10] R. W. Thompson, G. D. Barnett, M. S. Humayun, and G. Dagnelie, “Facial recognition using simulated prosthetic pixelized vision,” Investigative Ophthalmology and Visual Science, vol. 44, no. 11, pp. 5035-5042, Nov. 2003.
[11] K. Cha, K. Horch, and R. A. Normann, “Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system,” Annals of Biomedical Enguneering, vol. 20, no. 4, pp. 439-449, Jul. 1992.
[12] P. Hossain, I. W. Seetho, A. C. Browning, and W. M. Amoaku, “Artificial means for restoring vision,” BMJ, vol. 330, pp. 30-33, Jan. 2005.
[13] M. Sivaprakasam, W. Liu, G. Wang, J. D. Weiland, and M. S. Humayun, “Architecture tradeoffs in high-density microstimulators for retinal prosthesis,” IEEE Transactions on Circuits and Systems, vol. 52, no. 12, pp. 2629-2640, Dec. 2005.
[14] S. K. Kelly and J. Wyatt, “A power-efficient voltage-based neural tissue stimulator with energy recovery,” IEEE Solid-State Circuits Conference, vol. 1, pp. 228-524, Feb. 2004.
[15] J. Simpson and M. Ghovanloo, “An experimental study of voltage, current, and charge controlled stimulation front-end circuitry,” IEEE International Symposium on Circuits and Systems, pp. 325-328, May 2007.
[16] M. S. Humayun , J. D. Weiland, G. Y. Fujii, R. Greenberg, R. Williamson, J. Little, B. Mech, V. Cimmarusti, G. V. Boemel, G. Dagnelie, and E. de Juan Jr., “Electrical stimulus parameters for visual perception in blind humans with retinal prosthetic implants,” Vision Research, vol. 43, pp. 2573-2581, Feb. 2003.
[17] S. Suzuki, M. S. Humayun, J. D. Weiland, S. J. Chen, E. Margalit1, D. V. Piyathaisere, and E. de Juan Jr., “Comparison of electrical stimulation thresholds in normal and retinal degenerated mouse retina,” Japanese Journal of Ophthalmology, vol. 48, no. 4, pp. 345-349, Feb. 2004.
[18] J. S. Shyu, M. Maia, J. D. Weiland, T. O’Hearn, S. J. Chen, E. Margalit, S. Suzuki, and M.S. Humayun, “Electrical stimulation in isolated rabbit retina,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, pp. 290-298, Sep. 2006.
[19] W. Liu, M. Sivaprakasam, G. Wang, M. Zhou, J. Garnacki, J. Lacoss, and J. Wills, “Implantable biomimetic microelectronic systems design,” IEEE Engineering in Medicine and Biology Magazine, vol. 24, pp. 66-74, Sep.-Oct. 2005.
[20] G. Lesbros and M. Sawan, “Multiparameters monitoring for long term in-vivo characterization of electrode-tissues contacts,” IEEE Electronics, Circuits and Systems Conference, pp. 25-28, Dec. 2006.
[21] http://www.tsmc.com/download/enliterature/html-newsletter/April04/Quality&Reliability/index.html
[22] A. J. Annema , G. J. G. M. Geelen, and P. C. de Jong, “5.5-V I/O in a 2.5-V 0.25-μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 528-538, Mar. 2001.
[23] D. Seo, H. Dabag, Y. Guo, M. Mishra, and G. H. McAlister, “High-voltage-tolerant analog circuits design in deep sub-micron CMOS technologies,” IEEE Transactions on Circuits and Systems, vol. 54, pp. 2159-2166, 2007.
[24] S. Rajapandian, K. Shepard, P. Haxucha, and T. Karnik, “High-tension power delivery: Operating 0.18μm CMOS digital logic at 5.4V,” IEEE Solid-State Circuits Conference, vol. 1, pp.298-599, Feb. 2005.
[25] R. J. Baker, CMOS Circuit Design, Layout, and Simulation. Piscataway, NJ : Wiley IEEE Press, 2005.
[26] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[27] M. Sivaprakasam, W. Liu, M.S. Humayun, and J. D. Weiland, “A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 763-771, Mar. 2005.
[28] S. C. DeMarco, W. Liu, P. R. Singh, G. Lazzi, M.S. Humayun, and J.D. Weiland, “An arbitrary waveform stimulus circuit for visual prostheses using a low-area multibias DAC,” IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1679-1690, Oct. 2003.
[29] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
[30] A. P. Chu, K. Morris, R. J. Greenberg, and D. M. Zhou, “Stimulus induced pH changes in retinal implant,” IEEE Engineering in Medicine and Biology Society Conference, vol. 2, pp. 4160-4162, Sep. 2004.
[31] A. B. Majji, M. S. Humayun, J. D. Weiland, S. Suzuki, S. A. D’Anna , and E. de Juan Jr., “Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs,” Investigative Ophthalmology and Visual Science, vol. 40, no. 9, pp. 2073-2081, Aug. 1999.
[32] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Oxford University Press, 2002.
[33] M. Burns and G. W. Roberts, An Introduction to Mixed-Signal IC Test and Measurement. New York: Oxford University Press, 2001.
[34] M. Mahadevappa, J. D. Weiland, D. Yanai, I. Fine, R. J. Greenberg, and M. S. Humayun, “Perceptual thresholds and electrode impedance in three retinal prosthesis subjects,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13, no. 2, pp. 201- 206, Jun. 2005.
[35] S. Smith, Microelectronic Circuits. USA: Oxford University Press, 1997.
[36] A. Harb, Y. Hu, and M. Sawan, “Low-power CMOS interface for recording and processing very low amplitude signals,” Analog Integrated Circuits and Signal Processing, vol. 39, pp. 39-54, 2004.
[37] C. H. Kuo, S. L. Chen, and S. I. Liu, “Magnetic-field-to-digital converter using PWM and TDC techniques.” IEE Proceedings of Circuits, Devices and Systems, vol. 153, no. 3, pp. 247-252, Jun. 2006.
[38] P. Chen, S. L. Liu, and J. Wu, “A CMOS pulse-shrinking delay element for time interval measurement,” IEEE Transactions on Circuits and Systems, vol. 47, no. 9, pp. 954-958, Sep. 2000.
[39] T. A. Demassa and Z. Ciccone, Digital Integrated Circuits. New York: Wiley, 1996.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明