博碩士論文 945201029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.145.33.244
姓名 林宇亮(Yu-Liang Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 寬頻低雜訊放大器與三角積分調變分數型頻率合成器之研製
(The Implementations of Wideband Low Noise Amplifier and Fractional-N Frequency Synthesizer with Delta-sigma Modulator)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文係以TSMC 0.18 μm CMOS製程,研製應用於超寬頻(UWB)系統之寬頻低雜訊放大器,以及應用於微波存取全球互通系統(WiMax)利用三角積分調變器(Delta-Sigma Modulator)之分數型頻率合成器。
第一部分為寬頻低雜訊放大器之研製,此電路使用兩級串接式架構設計,在頻寬設計上利用橋接式並串峰化(Bridged-shunt-series peaking)架構,實現上的確造成不錯的頻寬延展效果並且兼顧增益平坦特性;在寬頻輸入匹配上使用電阻性回授的方式結合高通網路不僅可達成良好的匹配效果,且可同時具有不錯的雜訊指數特性。量測之最大功率增益發生於3 ~ 4 GHz,其值為14.2 dB,增益平坦度小於1 dB之頻寬為2.5 ~ 9.3 GHz,而3 dB頻寬為2.2 ~ 11 GHz;輸入及輸出反射損耗在整個寬頻範圍內分別大於9 dB及10 dB;隔離度大於32 dB;量測之雜訊指數其值為3.4 ~ 4.5 dB,而平均雜訊指數小於4 dB;輸入1 dB壓縮點及三階截斷點分別大於–8.5 dBm及–0.5 dBm,總功率消耗為30 mW。
第二部分為三角積分調變分數型頻率合成器之研製,此電路中包含了互補式LC交錯耦合壓控振盪器(VCO)、三角積分調變器(DSM)、多模數除頻器(MMD)、真實單一相位時脈(TSPC)除頻器、相位頻率檢測器(PFD)、充電泵(CP)以及迴路濾波器(LF)。在VCO的部份,為了防止製程變異所導致振盪頻率偏移,加入了二進位加權開關;在DSM的方面,為了避免電路的不穩定發生,使用多級雜訊整型(MASH)架構。量測之VCO調諧範圍從2.42 ~ 2.69 GHz,輸出功率為–1.5 ~ 0.1 dBm,相位雜訊在偏移主頻100 KHz和1 MHz分別為–88.7 ~ –95.3 dBc/Hz以及–117.1 ~ –122.9 dBc/Hz,直流功率消耗為4.14 mW。此壓控振盪器之FOM最佳值為184.9 dBc/Hz。
摘要(英) The thesis presents an Ultra Wideband low noise amplifier and a Fractional-N frequency synthesizer with delta-sigma modulator for WiMax applications, which are implemented in TSMC 0.18-μm CMOS technology.
The first section is the design of a broadband low noise amplifier, and the circuit adopts two-stage cascaded scheme. By adopting the bridged-shunt-series peaking technique, both the maximum bandwidth and the maximally flat response can be achieved in a way. The LC high-pass filter and the typical narrow band designs with a feedback resistor construct input matching network, which provides good input match while contributing a small amount in NF degradation. The measured power gain reaches its maximum value of 14.2 dB at around 3 to 4 GHz, and remains 1 dB flatness from 2.5 to 9.3 GHz. The 3-dB bandwidth is occurred from 2.2 to 11 GHz. The measured input and output return loss are larger than 9 dB and 10 dB over the entire UWB band. The measured isolation is greater than 32 dB. The measured noise figure is from 3.4 to 4.5 dB, and its average value is lower than 4 dB across the band of interested. Finally, the measured P1dB and IIP3 are better than -8.5 dBm and -0.5 dBm, respectively. The total power consumption is 30 mW.
The second section is the design of a Fractional-N frequency synthesizer with delta-sigma modulator, which includes a complementary LC cross-coupled voltage controlled oscillator (VCO), a delta-sigma modulator (DSM), a multi-modulus divider (MMD), a true single phase clock (TSPC) divider, a phase frequency detector (PFD), a charge pump (CP) and a loop filter (LF). In the VCO design, the binary weighted band switching capacitors are used to calibrate the frequency drifting under process variations. Besides, by adopting the multi-stage noise shaping (MASH) architecture of DSM avoids unstable condition. The measured VCO tuning range is from 2.42 to 2.69 GHz, and yields an output power from -1.5 to 0.1 dBm. The measured close loop phase noise under band switching are from -88.7 to -95.3 dBc/Hz and -117.1 to -122.9 dBc/Hz at 100 kHz offset and 1 MHz offset, respectively. The dc power consumption of VCO is 4.14 mW, and its associated FOM reaches the best value of 184.9 dBc/Hz.
關鍵字(中) ★ 多級雜訊整型
★ 三角積分調變器
★ 橋接式並串峰化
★ 寬頻低雜訊放大器
關鍵字(英) ★ Multi-stage noise shaping
★ Delta-sigma modulator
★ Bridged-shunt-series peaking
★ Wideband low noise amplifier
論文目次 中文摘要 I
英文摘要 II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 研究動機 1
1.2 研究成果 2
1.3 章節簡述 2
第二章 寬頻低雜訊放大器 3
2.1.1 超寬頻系統介紹 3
2.1.2 低雜訊放大器簡介 6
2.2.1 低雜訊放大器之重要參數指標 6
2.2.2 CMOS電晶體之雜訊模型 8
2.2.3 最佳電晶體寬度選擇 10
2.2.4 寬頻技術 14
2.2.5 輸入匹配 20
2.3 電路架構及模擬結果 23
2.4 寬頻低雜訊放大器量測結果與討論 26
第三章 三角積分調變之分數型頻率合成器 31
3.1.1 頻率合成器簡介 31
3.1.2 整數型頻率合成器 32
3.1.3 分數型頻率合成器 35
3.1.4 三角積分調變器之分數型頻率合成器 37
3.2 三角積分調變器 40
3.2.1 數位相位累加器 40
3.2.2 一階三角積分調變器 41
3.2.3 二階三角積分調變器 44
3.2.4 三階三角積分調變器 47
3.2.5 量化雜訊週期的擴展 49
3.3 三角積分調變器之分數型頻率合成器製作 52
3.3.1 相位頻率偵測器 52
3.3.2 充電泵 53
3.3.3 壓控振盪器 55
3.3.4 多模數除頻器 62
3.3.5 前置除頻器 63
3.3.6 多級雜訊整型三階三角積分調變器 64
3.3.7 迴路濾波器 68
3.3.8 差動轉單端緩衝電路 71
3.3.9 模擬系統建立 72
3.4 量測結果與討論以及未來方向 76
3.4.1 壓控振盪器量測結果 77
3.4.2 改進方向 80
3.4.3 未來方向 83
參考文獻 90
參考文獻 [1] David M. Pozar, “Microwave Engineering,” 3rd Edition, John Wiley & Sons, Inc., 2004.
[2] D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, Vol. 32, pp. 745-759, May 1997.
[3] S. S. Mohan, M. d. M. Hershenson, S. P. Boyd and T. H. Lee, “Bandwidth Extension in CMOS with Optimized On-Chip Inductors,” IEEE J. Solid-State Circuits, Vol. 35, pp. 346-355, March 2000.
[4] T. K. Nguyen, C. H. Kim, G. J. Ihm, M. S. Yang, and S. G. Lee, “CMOS Low-Noise Amplifier Design Optimization Technique,” IEEE Transations on Microwave Theory and Techniques, Vol. 52, pp. 1433-1442, May 2004.
[5] A. Ismail, and A. Abidi, “A 3-10-GHz Low-Noise Amplifier With Wideband LC-Ladder Matching Network,” IEEE J. Solid-State Circuits, Vol. 39, pp. 2269-2277, Dec. 2004.
[6] A. Bevilacqua, and A. M. Niknejad, “An Ultrawideband CMOS Low-Noise Amplifier for 3.1-10.6-GHz Wireless Receivers,” IEEE J. Solid-State Circuits, Vol. 39, pp. 2259-2268, Dec. 2004.
[7] C. W. Kim, M. S. Kang, P. T. Anh, H. T. Kim, and S. G. Lee, “An Ultra-Wideband CMOS Low Noise Amplifier for 3–5-GHz UWB system,” IEEE J. Solid-State Circuits, Vol. 40, pp. 544-547, Feb. 2005.
[8] S. Shekhar, X. Li and D. J. Allstot, “A CMOS 3.1-10.6 GHz UWB LNA employing stagger-compensated series peaking,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 63-66, June 2006.
[9] C.-T. Fu and C.-N. Kuo, “3~11-GHz CMOS UWB LNA Using Dual Feedback for Broadband Matching,” Radio Frequency Integrated Circuits (RFIC) Symposium, June 2006.
[10] C.-F. Liao and S.-I. Liu, “A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers,” IEEE J. Solid-State Circuits, Vol. 42, pp. 329-339, Feb. 2007.
[11] Y.-J. Lin, S. S. H. Hsu, J.-D. Jin and C. Y. Chan, “A 3.1–10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique,” IEEE Microwave and Wireless Components Letters, Vol. 17, pp. 232-234, March 2007.
[12] S. Shekhar, J. S. Walling, and D.J. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits, Vol. 41, pp. 2424-2439, Nov. 2006.
[13] 張忠平, “超寬頻無線射頻收發機CMOS射頻晶片之設計研究,” 國立成功大學電機工程研究所碩士論文, 2005.
[14] 包克豪, “應用於超寬頻無線射頻收發機之CMOS分散式主動射頻積體電路之設計研究,” 國立成功大學電機工程研究所碩士論文, 2006.
[15] B. Razavi, “RF Microelectronics,” Prentice Hall, Inc., 1998.
[16] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” Cambridge, 1998.
[17] F. M. Gardner, “Charge-Pump Phase-Locked Loops,” IEEE Trans. Comm. Vol. COM-28, pp. 1849-1858, Nov. 1980.
[18] A. Hajimiri and T. H. Lee, “A General Theory of Phase Noise in Electrical Oscillator,” IEEE J. Solid-State Circuits, Vol. 33, pp. 179-194, Feb. 1998.
[19] A. Hajimiri and T. H. Lee, “Design Issues in CMOS Differential LC Oscillators,” IEEE J. Solid-State Circuits, Vol. 34, pp. 717-724, May 1999.
[20] J. J. Rael and A. A. Abidi, “Physical Processes of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569-572, May 2000.
[21] E. Hegazi, H. Sjoland, and A. A. Abidi, “A Filtering Technique to Lower LC Oscillator Phase Noise,” IEEE J. Solid-State Circuits, Vol. 36, pp. 1921-1930, Dec. 2001.
[22] R. Aparicio, and A. Hajimiri, “A Noise-Shifting Differential Colpitts VCO,” IEEE J. Solid-State Circuits, Vol. 37, pp. 1728-1736, Dec. 2002.
[23] N. H. W. Fong, J.-O. Plouchart, N. Zamdmer, D. Liu, L. F. Wagner, C. Plett, and N. G. Tarr, “Design of Wide-Band CMOS VCO for Multiband Wireless LAN Applications,” IEEE J. Solid-State Circuits, Vol. 38, pp. 1333-1342, Aug. 2003.
[24] A. Fard, T. Johnson, and D. Aberg, “A Low Power Wide Band CMOS VCO for Multi-Standard Radios,” Radio and Wireless Conference, pp. 79-82, Sept. 2004.
[25] A. D. Berny, A. M. Niknejad, and R. G. Meyer, “A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration,” IEEE J. Solid-State Circuits, Vol. 40, pp. 909-917, April 2005.
[26] Zhenbiao Li, and Kenneth K. O, “A Low-Phase-Noise and Low-Power Multiband CMOS Voltage Controlled Oscillator,” IEEE J. Solid-State Circuits, Vol. 40, June 2005.
[27] J. Navarro Soares Jr., and W. A. M. Van Noije, “A 1.6-GHz Dual Modulus Prescaler Using the Extended True-Single-Phase-Clock CMOS Circuit Technique (E-TSPC),” IEEE J. Solid-State Circuits, Vol. 34, pp. 97-102, Jan. 1999.
[28] S. Pellerano, S. Levantino, C. Samori, and A. L. Lacaita, “A 13.5-mW 5-GHz Frequency Synthesizer With Dynamic-Logic Frequency Divider,” IEEE J. Solid-State Circuits, Vol. 39, pp. 378-383, Feb. 2004.
[29] T. A. Riley, M. A. Copeland, and T. A. Kwasniewski, “Delta-Sigma Modulation in Fractional-N Frequency Synthesis,” IEEE J. Solid-State Circuits, Vol. 28, pp. 553-559, May 1993.
[30] B. Razavi, “Challenges in the Design of Frequency Synthesizers for Wireless Applications,” IEEE Custom Integrated Circuits Conf., pp. 395-402., May 1997.
[31] T. P. Kenny, T. A. D. Riley, N. M. Filiol, and M. A. Copeland, “Design and Realization of A Digital Delta-Sigma Modulator for Fractional-N Frequency Synthesis,” IEEE Trans. Vehicular Technology, Vol. 35, pp.510-521, March 1999.
[32] W. Rhee, B. S. Song, and A. Ali, “A 1.1-GHz CMOS Fractional-N Frequency Synthesizer with a 3-b third-order Delta-Sigma Modulator,” IEEE J. Solid-State Circuits, pp. 1453-1460, Oct. 2000.
[33] M. H. Perrott, M. D. Trott, and C. G. Sodini, “A Modeling Approach for S-D Fractional-N Frequency Synthesizers Allowing Straightforward Noise Analysis,” IEEE J. Solid-State Circuits, Vol. 37, pp. 1028-1038, Aug. 2002.
[34] B. De Muer, and M. S. J. Steyaert, “A CMOS Monolithic Sigma-Delta-Controlled Fractional-N Frequency Synthesizer for DCS-1800,” IEEE J. Solid-State Circuits, Vol. 37, pp. 835-844, July 2002.
[35] B. De Muer, and M. S. J. Steyaert, “On The Analysis of Delta-Sigma Fractional-N Frequency Synthesizers For High-Spectral Purity,” IEEE J. Solid-State Circuits, Vol. 50, pp. 784-793, Nov. 2003.
[36] S. Pamarti, L. Jansson, and I. Galton, “A Wideband 2.4-GHz Delta-Sigma Fractional-N PLL with 1-Mb/s in-Loop Modulation,” IEEE J. Solid-State Circuits, Vol. 39, pp. 49-62, Jan. 2004.
[37] 彭康峻, “無線通訊分數式頻率合成器之現場可程式化邏輯陣列電路設計,” 國立中山大學電機工程研究所碩士論文, 2000.
[38] 張家賢, “一個2V 5GHz CMOS非整數頻率合成器與和差調變器設計,” 國立中央大學電機工程研究所碩士論文, 2001.
[39] 林郁翔, “應用於射頻前級接收電路之三角積分調變除小數頻率合成器,” 國立台灣大學電機工程研究所碩士論文, 2002.
[40] 張彥堂, “應用除小數頻率合成器之GFSK調變器,” 國立台灣大學電機工程研究所碩士論文, 2003.
[41] 彭康峻, “採用雙點差異積分調制方式之寬頻GFSK調制頻率合成器,” 國立中山大學電機工程研究所博士論文, 2004.
[42] 邱偉茗, “一個使用和差調變器的2.4 GHz直接調變發射器,” 國立交通大學電子工程研究所碩士論文, 2004.
[43] 何文豪, “採用單迴路差異積分調制器之分數式頻率合成器,” 國立中山大學電機工程研究所碩士論文, 2005.
[44] 羅正斌, “頻率合成器之分數式架構非線性效應研究與混合訊號IC實現,” 國立中山大學電機工程研究所碩士論文, 2006.
[45] 高曜煌, “射頻鎖相迴路IC設計,” 滄海書局, 2005.
[46] 劉深淵, 楊清淵, “鎖相迴路,” 滄海書局, 2006.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2007-10-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明