參考文獻 |
[1] V. Aparin, G. Brown, and L. E. Larson, “Linearization of CMOS LNAs via
optimum gate biasing,” in IEEE Int. Circuits Syst. Symp., Vancouver, BC, Canada,
vol. IV, pp. 748–751, May 2004.
[2] Y. Ding and R. Harjani, “A +18 dBm IIP3 LNA in 0.35 _m CMOS,” in IEEE
International Conference on Solid-State Circuits., San Francisco, CA, pp.
162–163, Feb. 2001.
[3] D. R. Webster, D. G. Haigh, J. B. Scott, and A. E. Parker, “Derivative
superposition—a linearization technique for ultra broadband systems,” in IEE
Wideband Circuits Modeling and Tech. Colloq., pp. 3/1–3/14, May 1996.
[4] B. Kim, J. S. Ko, and K. Lee, “A new linearization technique for MOSFET RF
amplifier using multiple gated transistors,” IEEE Microw. Guided Wave Lett., vol.
10, no. 9, pp. 371–373, Sep. 2000.
[5] V. Aparin and L. E. Larson, “Modified derivative superposition method for
linearizing FET low-noise amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 53,
no. 2, pp. 571–581, Feb. 2005.
[6] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits,
Cambridge, U.K.: Cambridge Univ. Press, 1998.
[7] P. Quinn, “A cascode amplifier nonlinearity correction technique,” 1981 IEEE
International Conference on Solid-State Circuits, pp. 188-189, Feb 1981.
[8] R. Point, M. Mendes, W. Foley, “A differential 2.4 GHz switched-gain CMOS
LNA for 802.11b and Bluetooth, 2002 IEEE Conference on Radio and Wireless,
pp. 221-224, Aug 2002.
[9] S. Mou, J. G. Ma, K. S. Yeo, and M. A. Do, “A modified architecture used for
input matching in CMOS low-noise amplifiers” 2005 IEEE Transactions on
Circuits and Systems II, Vol. 52, pp. 784-788, Nov. 2005.
[10] Y. S. Hwang, C. J. Kim, J. H. Kim, and H. J. Yoo “A controllable variable gain
LNA for 2 GHz band,” 2005 Asia-Pacific Conference on Microwave, vol. 5, pp.
4-7, Dec 2005.
[11] L.-J. Lu, H.-H. Hsieh, and Y.-S. Wang, “A Compact 2.4/5.2-GHz CMOS
Dual-Band Low-Noise Amplifier,” IEEE Microwave and Wireless Components
Letters, vol. 15, no. 10, pp. 685-687, Oct. 2005.
[12] X. Li; S. Shekhar, and D.J. Allstot, “Gm boosted common-gate LNA and
differential colpitts VCO/QVCO in 0.18 um CMOS,” IEEE JOURNAL OF
SOLID-STATE CIRCUITS, VOL. 40, pp. 2609-2619, DECEMBER 2005
[13] J. R Long, Member, IEEE,”Monolithic Transformers for Silicon RF IC Design ,”
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 9, SEPTEMBER
2000
[14] M. Danesh and J. Long, “Differential driven symmetric microstrip inductors,”
IEEE Trans. Microwave Theory and Techniques, vol. 50, no. 1, Jan. 2002.
[15] B. A. Floyd, L. Shi, Y. Taur, I. Lagnado, and K. K. O, “A 23.8-GHz SOI CMOS
tuned amplifier,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2193–2195,
Sept. 2002.
[16] L. M. Franca-Neto, B. A. Bloechel, and K. Soumyanath, “17 GHz and 24 GHz
LNA designs based on extracted-S-parameter with microstrip- on-die in 0.18 _m
logic CMOS technology,” Eur. Solid-State Circ., pp. 149–153, 2003.
[17] K.-W. Yu, Y.-L. Lu, D. C. Chang, V. Liang, and M. F. Chang, “K-band low-noise
amplifiers using 0.18 μm CMOS technology”, IEEE Microwave and Wireless
Component Letter, vol. 14, no. 3, pp. 106-108, March 2004.
[18] B. Welch, K.T. Kornegay, H.-M. Park, and J. Laskar, “A 20-GHz Low-Noise
Amplifier With Active Balun in a 0.25-μm SiGe BICMOS Technology ,” IEEE J.
Solid-State Circuits, vol. 40, Issue. 10, pp. 2092-2097, Oct., 2005.
[19] X. Guo, K. K. O, “A power efficient differential 20-GHz low noise amplifier
with 5.3-GHz 3-dB bandwidth”, IEEE Microwave and Wireless Component
Letter, vol. 15, Issue. 9, pp. 603-605, Sept 2005.
[20] R. Svitek, and S. Raman, “5-6 GHz SiGe active I/Q subharmonic mixers with
power supply noise effect characterization, IEEE Microwave and Wireless
Components Letters, vol. 14, pp. 319-321, July 2004.
[21] K. Nimmagadda, G.M. Rebeiz, “A 1.9 GHz double-balanced subharmonic mixer
for direct conversion receivers,” IEEE Symposium on Radio Frequency
Integrated Circuits, pp. 253-256, May 2001.
[22] M. Goldfarb, E. Balboni, and J. Cavey, “Even harmonic double-balanced active
mixer for use in direct conversion receivers,” IEEE J. Solid-State Circuits, vol.
38, pp. 1762-1766, Oct 2003.
[23] H.-C. Chen, T. Wang, S.-S Lu, and G.-W. Huang “A monolithic 5.9-GHz CMOS
I/Q direct-down converter utilizing a quadrature coupler and transformer-coupled
subharmonic mixers,” IEEE MWCL, vol. 16, pp. 197-199, April 2006.
[24] B. Gilbert, “The MICROMIXER: A highly linear variant of the Gilbert mixer
using a bisymmetric Class-AB input stage.” IEEE J. Solid-State Circuits, Vol. 32,
pp. 1412-1423, Sept. 1997.
[25] C. C. Meng, S. S. Lu, M. H. Chiang and H. C. Chen, “DC to 8 GHz 11 dB gain
Gilbert micromixer using GaInP/GaAs HBT technology.” Electronics Letters,
Vol. 39 Issue: 8, April 2003.
[26] “RF System and Circuit Challenges for WiMax,” Intel Technology Journal, vol.
08, pp189-200, Aug. 2004.
[27] B. Gilbert, “The multi-tanh principle: A tutorial overview.” IEEE J. Solid-State Circuits, Vol. 33, no. 1, pp. 2-17, Jan. 1998.
[28] S.-T. Lim, and J.R Long, , “A Low-Voltage Broadband Feedforward-Linearized
BJT Mixer.” IEEE J. Solid-State Circuits, Vol. 41, pp. 2177-2187, Sept. 2006.
[29] S. Otaka, M. Ashida, M. Ishii, T. Itakura, “A +10-dBm IIP3 SiGe mixer with IM3
cancellation technique.” IEEE J. Solid-State Circuits, Vol. 39, pp. 2333-2341,
Dec. 2004.
[30] J. J. Rael and A. A. Abidi, “Physical Process of Phase Noise in Differential LC
Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569-572, May
2000.
[31] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits,
Cambridge, U.K.: Cambridge Univ. Press, 1998.
[32] L. Jia, J.-G. Ma, K. S. Yeo, and M. A. Do, “9.3-10.4-GHz-band cross-coupled
complementary oscillator with low phase-noise performance,” IEEE Trans,
Microwave Theroy Tech., vol. 52, pp. 1273-1278, April 2004.
[33] N.-J. Oh and S.-G. Lee, “11-GHz CMOS differential VCO with back-gate
transformer feedback,” IEEE Microwave Wireless Comp. Lett., vol. 15,
pp.733-735, Nov. 2005.
[34] T. Song, S. Ko, D.-H. Cho, H.-S. Oh, C. Chung, and E. Yoon, “A 5GHz
transformer-coupled CMOS VCO using bias-level shifting technique,” IEEE
Symposium on Radio Frequency Integrated Circuits (RFIC), pp.127-130, June
2004.
[35] M.-D. Tsai, Y.-H. Cho, and H. Wang, “A 5-GHz low phase noise differential
colpitts CMOS VCO,” IEEE Microwave Wireless Comp. Lett., vol. 15,
pp.733-735, May 2005.
[36] A. Hajimiri and T. H. Lee, “A General Theory of Phase Noise in Electrical
Oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb.
1998.
[37] R. Aparicio, and A. Hajimiri, “A Noise-Shifting Differential Colpitts VCO,”
IEEE J. Solid-State Circuits, vol. 37, pp. 1728-1736, Dec. 2002.
[38] E. Hegazi, H. Sjoland, and A. A. Abidi, “A Filtering Technique to Lower LC
Oscillator Phase Noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921-
1930, Dec. 2001.
[39] J. Gil, S.-S. Song, H. Lee, and H. Shin, “A -119.2 dBc/Hz at 1MHz, 1.5 mW,
fully integrated, 2.5 GHz, CMOS VCO using helical inductors,” IEEE Microw.
Wireless Compon. Lett., vol. 13, no. 11, pp.457–459, Nov. 2003.
[40] L. Jia, J. G. Ma, K. S. Yeo, X. P. Yu, M. A. Do, and W. M. Lim, A 1.8-V
2.4/5.15-GHz Dual-Band LC VCO in 0.18-μm CMOS Technology, ” IEEE
Microwave Wireless Comp. Lett., vol. 16, pp.194-196, April 2006.
[41] B. Bisla, R. Eline, and L.M. Franca-Neto, “RF System and Circuit
Challenges for WiMax,” Intel Technology Journal, vol. 8, No. 3, pp.
189-199, Aug. 2004.
[42] A. Ghosh, D.R. Wolter, J.G. Andrews, and R. Chen, “Broadband Wireless
Access with WiMax/802.16: Current Performance Benchmarks and Future
Potential,” IEEE Communications Magazine, vol. 43, No. 2, pp. 129-136,
Feb. 2005.
[43] S.M. Cherry, “WiMax and Wi-Fi Separate and Unequal,” IEEE Spectrum,
vol. 41, No. 3, pp. 16-16, Mar. 2004.
[44] “Part 16: Air Interface for Fixed Broadband Wireless Access Systems,”
IEEE Standard for Local and metropolitan area networks, IEEE Std™
802.16-2004, 2004.
[45] 李金龍, “雜訊消除放大器與寬頻矩陣型分佈式放大器暨壓控振盪器之研
製," 碩士論文, 2006, 國立中央大學。
[46] 曾卿銘, “3.1~10.6 GHz 超寬頻接收機前端電路之研究,"碩士論文, 2006,
國立中央大學。 |