博碩士論文 945201048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:13.59.234.182
姓名 鄭金展(Jin-jhan Jheng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具組成梯度能隙的非晶質矽合金p-i-n太陽能電池
(P-I-N Solar Cell with Composition-Graded Amorphous Silicon-Alloy Layers)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器
★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體★ 大面積矽偵測器的製程改良與元件設計
★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在資源枯竭及能量需求量大的時代,太陽能勢必成為未來的新興能源。本研究的主要目的是研製非晶矽鍺及具組成梯度能隙的非晶質矽合金p-i-n太陽能電池。主要是利用本質非晶矽鍺層吸收600奈米附近的強太陽光,以及利用組成梯度能隙(composition-graded band-gap)的本質層吸收不同波段的太陽光。實驗結果顯示,使用組成梯度能隙當本質層的太陽能電池可獲得較大的開路電壓,而其較低的短路電流及填充因子(fill factor),造成元件整體的效率下降。
摘要(英) The p-i-n solar cells with amorphous silicon-alloy had been designed and fabricated in this study. The constant-gap i-a-SiGe:H layer and the composition-graded-gap i-a-SiGe:H layer were used as the main absorption layer respectively. The peak wavelength of the i-SiGe:H absorptance spectrum was around 600 nm which is the irradiance peak wavelength in solar spectrum, while the composition-graded i-a-SiGe:H layer had the higher absorptance for light wavelength ranging from 400 nm to 600 nm. From the experiment results, it could be seen the efficiencies of devices with composition-graded-gap and constant-gap structures were 0.94% and 1.22% respectively, but the device with composition-graded-gap structure had a higher open-circuit voltage (Voc).
關鍵字(中) ★ 非晶質
★ p-i-n
★ 太陽能
★ 電池
關鍵字(英) ★ Amorphous Silicon
★ P-I-N
★ Solar Cell
論文目次 Table Captions………………Ⅲ
Figure Captions……………Ⅳ
Chapter 1 INTRODUCTION……………1
Chapter 2 EXPERIMENTAL PROCEDURES……………3
2.1 Preparations of Various Amorphous Films [16]…………3
2.1.1 Deposition System………3
2.1.2 Deposition of a-SiGe:H and a-Si:H Films…………5
Device Synopsis…………7
2.3 Device Fabrication…………11
2.4 Measurement Techniques…………15
2.4.1 Optical-gap of Amorphous Film [20]…………15
2.4.2 Dark and Photo I-V Measurements…………15
2.5 Analysis of Photovoltaic Cell…………17
Chapter 3 RESULTS AND DISCUSSION…………21
3.1 Absorptance Spectrum of P-I-N Solar Cell…………21
3.2 Effect of Graded-gap i-a-SiGe:H Layer in Device 2……21
3.3 Effect of P-I Interface on Performance of Cell………29
Chapter 4 CONCLUSION…………32
REFERENCES…………33
參考文獻 [1] W. E. Spear and P. G. LeComber, “Substitutional doping of amorphous silicon,” Solid State Commun., Vol. 17, p.1193, 1975.
[2] D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett., Vol. 28, pp.671-673, 1975.
[3] Mitchell, K. W., D. Tanner, S. Vasquez, D. Willet, and S. Lewis, “Device characterization and analysis of thin-film silicon hydrogen solar cells,” Proc. 18th IEEE Photovoltaic Specialists Conf., pp. 914-919, 1985.
[4] A. Madan, J. McGill, W. Czubatyj, J. Yang, and S. R. Ovshinsky, “Metal-insulator-semiconductor solar cells using amorphous Si:F:H alloys,” Appl. Phys. Lett., Vol. 37, pp.826-828, 1980.
[5] D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett., Vol. 31, pp. 292-294, 1977.
[6] Ruud E. I. Schropp and Miro Zeman, “New Developments in amorphous thin-film silicon solar cells,” IEEE Trans. on Electron Devices, Vol. 46, pp.2086-2092, 1999.
[7] S. Moriuchi, Y. Inoue, H. Sannomiya, A. Yokota, M. Itoh, Y. Nakata, H. Itoh, “High reliability three stacked amorphous silicon solar cell,” Proc. 21th IEEE Photovoltaic Specialists Conf., Vol. 2, pp. 1449-1454, 1990.
[8] S. Guha, J. Yang, A. Banerjee, K. Hoffman, S. Sugiyama, and J. Call, “Triple junction amorphous silicon alloy PV manufacturing plant of 5 MW annual capacity,” Proc. 26th IEEE Photovoltaic Specialists Conf., pp. 607-610, 1997.
[9] J. Yang, A. Banerjee, S. Guha, “Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Appl. Phys. Lett., Vol. 70, pp. 2975-2977, 1997.
[10] Y. Tawada, M. Kondo, H. Okamoto, Y. Hamakawa, “Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells,” Solar Energy Mater., Vol. 6, pp. 299-315, 1982.
[11] S. Guha, J. Yang, P. Nath, M. Hack, “ Enhancement of open-circuit voltage in high efficiency amorphous silicon-alloy solar cells, ” Appl. Phys. Lett., Vol. 49, pp.218-219, 1986.
[12] S. Guha, K. L. Narasimhan, S. M. Pietruszko, “On light-induced effect in amorphous hydrogenated silicon,” J. Appl. Phys., Vol. 52, pp.859-860, 1981.
[13] A. Matsuda, T. Yamaoka, S. Wolff, M. Koyama, Y. Imanishi, H. Kataoka, H. Matsuura, K. Tanaka, “Preparation of highly photosensitive hydrogenated amorphous Si-C alloys from a glow-discharge plasma,” J. Appl. Phys., Vol. 60, pp. 4025-4027, 1986.
[14] A. Kolodziej, P. Krewniak, and S. Nowak, “Improvement in silicon thin-film solar cell efficiency, ” Opto-Electron. Rev., Vol. 11, pp 281-290, 2003.
[15] B. Rech, H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys. A 69, pp. 155-167, 1999.
[16] T. C. Chung, “Opoelectronic characteristics of green-blue-white a-SiN:H-based p-i-n thin film emitting diodes (TFLEDs) ,” M. S. Thesis, NCU, Taiwan, R.O.C., 1998.
[17] J. C. Wang, “Improving the characteristics of amorphous metal- semiconductor-metal photodetectors (MSM-PDs),” M. S. Thesis, NCU, Taiwan, R.O.C., 1996.
[18] R. A. C. M. M. van Swaaij, M. Zeman, S. Arnoult, and J. W. Metselaar, “Performance dependence on grading width of a-SiGe:H component solar cells,” Proc. 28th IEEE Photovoltaic Specialists Conf., pp. 869-872, 2000.
[19] R. A. C. M. M. van Swaaij, M. Zeman, B. A. Korevaar, C. Smit, J. W. Metselaar, “Challenges in amorphous silicon solar cell technology,” Acta Physica Slovaca Vol. 50, No. 4, pp. 5594-570, 2000.
[20] T. R. Yu, “Design and fabrication of a-C:H and a-SiN:H alternating-current white thin-film light-emitting diodes,” M. S. Thesis, NCU, Taiwan, R.O.C.,2006.
[21] J. Tauc, Amorphous and Liquid Semiconductors, chap. 5, Plenum Press, pp. 175, 1974.
[22] C. M. Fortmann and J. C. Tu, “Defects in amorphous silicon germanium alloys,” Proc. 20th IEEE Photovoltaic Specialists Conf., Vol. 1, pp. 139-141, 1988.
[23] Y. P. Chou and S. C. Lee, “Structural, optical, and electrical properties of hydrogenated amorphous silicon germanium alloys,” J. Appl. Phys., Vol. 83, pp. 4111-4123, 1998.
[24] A. H. Pawlikiewicz and S. Guha, “The effect of dominant junction on the open circuit voltage of amorphous silicon alloy solar cells,” Mat. Res. Soc. Symp. Proc., Vol.118, pp.599-604, 1988.
[25] S. Guha, J. Yang, A. Pawlikiewicz, T. Glatfelter, R. Ross, S. R. Ovshinsky, “Band-gap profiling for improving the efficiency of amorphous silicon-alloy solar cells,” Appl. Phys. Lett., Vol. 54, pp. 2330-2332, 1989.
[26] A. Catalano, G. Wood, “A method for improved short-wavelength response in hydrogenated amorphous silicon-based solar cells,” Appl. Phys. Lett., Vol. 63, pp. 1220-1222, 1988.
[27] J. Ballutaud, A. A. Howling, L. Sansonnens, C. Hollenstein, U. Kroll, “Plasma deposition of p-i-n devices using a single PECVD chamber,” 29th EPS Conference on Plasma Phys., Vol. 26B, 2002.
[28] J. Bauer, H. Calwer, P. Marklstorfer, P. Milla, F. W. Schulze, “Manufacturing of large area single junction a-Si:H solar modules with 10.7% efficiency,” J. Non-Cryst. Solids, Vol. 164, pp.685-668, 1993.
[29] T. Nii, T. Kase and P. Sichanugrist “High efficiency a-Si:H solar cells by single chamber method,” Proc. 23th IEEE Photovoltaic Specialists Conf., pp. 941-945, 1993.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2007-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明