博碩士論文 945201064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.145.18.135
姓名 楊立群(Li-chyung Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高速高功率單模態850nm波段面射型雷射
(High speed,high power,single mode 850nm wavelength vertical cavity surface emitting lasers)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們利用鋅擴散製作出850nm波段的單模態面射型雷射,而沒有利用一般縮小氧化孔徑之方法來產生單模態,這可以減小元件之熱效應。我們氧化孔徑為9μm的元件,頻寬能達到8GHz,有一個較小的微分電阻為47Ω,最大輸出功率為3mW,而在不同電流注入時,頻譜也都是維持單模態,且頻譜我們是在動態調制下量測。而我們所製作出來的單模面射型雷射在本質頻寬方面也比我們所製作出來的多模面射型雷射來的大(31GHz vs. 17GHz)。且我們的單模面射型雷射有比較窄的發散角(80 vs. 200) ,且單模的面射型雷射在調準限度(alignment tolerance)方面也有比較好的表現。
摘要(英) By utilizing the Zn-diffusion technique, we demonstrate a single-mode 850nm vertical-cavity surface-emitting laser (VCSEL) without greatly downscaling the diameter of oxide-confined aperture to minimize the thermal effect. The demonstrated device with a 9 μm active diameter can attain an 8GHz bandwidth, a
small differential resistance (~47Ω47Ω), a 3mW maximum output power, and sustain the
single-mode characteristic under dynamic operation and whole range of bias current.
According to the dynamic measurement results, our single-mode device can
eliminate the damping-limited bandwidth,which was observed in our multi-mode
control without the Zn-diffusion aperture, and has a larger intrinsic bandwidth
(31GHz vs. 17GHz) due to the elimination of mode competition effect. The
narrower divergence angle (80 vs. 200) means that the device exhibits a larger
alignment tolerance and much lower coupling loss when used with the standard
multi-mode fiber than those of the control sample.
關鍵字(中) ★ 半導體雷射
★ 面射型雷射
關鍵字(英) ★ vertical-cavity surface-emitting laser
★ semiconductor laser
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VII
表目錄 XI
第一章 序論 1
1-1 簡介 1
1-2 1-2 VCSEL 的磊晶結構 4
1-3 1-3 典型面射型雷射之介紹 6
1-4 1-3-1 氧化物侷限之面射型雷射 6
1-3-2 離子佈植方式之面射型雷射 7
1-4 單模850nm 波段VCSEL 應用於光連結 8
第二章 理論 10
2-1 鋅擴散於DBR 10
2-2 VCSEL 的選擇性水氧化理論 14
2-3 發散角 17
第三章 實驗 19
3-1 鋅擴散製程 19
3-2 水氣氧化 23
3-3 製作p-type 和n-type 電極以及金屬回火 26
3-4 平坦化及製作金屬接線 30
3-5 實驗設備 33
3-5-1 鋅擴散 33
3-5-2 水氧化 34
第四章 結果與討論 35
4-1 量測系統 35
4-1-1 電流對電壓(I-V)的量測 35
4-1-2 輸出光功率對電流(L-I)之量測 35
4-1-3 發散角(Divergence Angle)之量測系統 36
4-1-4 近場投影 37
4-1-5 頻譜(Spectrum)之量測 37
4-1-6 頻寬(Bandwidth)之量測 38
4-3 氧化型VCSEL 量測結果 39
4-3-1 電流電壓I-V 曲線 39
4-3-2 輸出光功率對電流(L-I)曲線 40
4-3-3 二維(2-D)遠場模態 41
4-3-4 發散角 42
4-3-5 頻譜圖 43
4-3-6 頻寬之量測結果 45
4-4 氧化型合併鋅擴散VCSEL 量測結果 46
4-4-1 電流電壓I-V 曲線 46
4-4-2 輸出光功率對電流(L-I)曲線 47
4-4-3 二維(2-D)遠場模態 48
4-4-4 發散角 49
4-4-5 頻譜圖 50
4-4-6 頻寬(Bandwidth)之量測結果 51
4-5 參數模擬及不同結構比較 53
4-5-1 S11 參數模擬 53
4-5-2 K 參數(K parameter)模擬 55
4-5-3 元件之調準限度(Alignment tolerance)比較 56
第五章 結論 58
參考資料 60
參考文獻 [1] H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys., vol. 18, pp.2329-2330, 1979.
[2] K. Iga, S. Ishikawa, S. Ohkouchi, and T. Nishimura, “Room-temperature pulsed oscillation of GaAlAs/GaAs surface-emitting injection laser,” Appl. Phys. Lett., vol. 45, pp. 348-350, 1984.
[3] F. Mederer, R. Jäger, J. Joos, M. Kicherer, R. King, R. Michalzik, M. Riedl, H. Unold, and K.J. Ebeling , “Improved VCSEL Structures for 10 Gigabit-Ethernet and Next Generation Optical-Integrated PC-Boards,” Electronic Components and Technology Conference , 2001, , p 1-7
[4] L. A. Coldren, and S. W. Corzine, Chapter 3 “Diode Lasers and Photonic Integrated Circuits,” Wiley, New York, 1995.
[5] N. N. Ledentsov, “Long-wavelength quantum-dot lasers on GaAs substrates: From media to device concepts,” IEEE J. Select. Topics Quantum Electron., vol 8, n 5, pp. 1015-1024, Sep-Oct, 2002
[6] H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser,” Appl. Phys. Lett. vol. 69, pp. 3140-3142, Nov, 1996.
[7] K.L.Lear, K. D. Choquette, R. P. Schneider, Jr., and S. P. Kilcoyne, “Modal Analysis of a small surface emitting laser with a selectively oxidized waveguide” Appl.Phys. Lett. 66, p.2616 ,1995
[8] F. A. Kish, S. J. Caracci, N. Holonyak,Jr.,J. M. Dallesasse, K. C. Hsieh, M. J. Ries, S. C. Smith, and R. D. Burnham, “Planar native-oxide index-guided AlxGa1-xAs quantum well heterostructure lasers.” Appl. Phys. Lett., 59, pp.1755-1757, 1991
[9] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement.” Appl. Phys. Lett., 66, pp.1723-1725, 1995
[10] B. M. Hawkins, R. A. Hawthorne, III, J. K. Guenter, J. A. Tatum, and J. R. Biard, “Reliability of various size oxide aperture VCSELs,” Proc. Conf. 52nd Electronic Components and Technology., pp. 540–550, 2002.
[11] K. Tai, R. J. Fischer, K. W. Wang, S. N. G. Chu, and A. Y. Cho, “Use of implant isolation for fabrication of vertical-cavity surface-emitting laser diodes,”Electronics Letters, 25, 1644-1645,1989
[12] Naofumi Suzuki, Hiroshi Hatakeyama, Member, IEEE, Keiichi Tokutome, Kimiyoshi Fukatsu, Mitsuki Yamada, Takayoshi Anan, and Masayoshi Tsuji, “1.1μm-Range InGaAs VCSELs for High-Speed Optical Interconnections,” IEEE Photon. Technol. Lett., v 18, n 12, Jun 15, 2006, p 1368-1370
[13] Dieter Wiedenmann, Roger King, Christian Jung, Roland J¨ager, Rainer Michalzik, Peter Schnitzer, Student Member, IEEE, Max Kicherer, and Karl J. Ebeling, Senior Member, IEEE, “Design and Analysis of Single-Mode Oxidized VCSEL’s for High-Speed Optical Interconnects,” IEEE Journal on Selected Topics in Quantum Electronics, v 5, n 3, 1999, p 503-511
[14] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. of SPIE, vol. 6484, pp. 64840J-1-64840J-12, 2007.
[15] F. Mederer, I. Ecker, J. Joos, M. Kicherer, H. J . Unold, K. J. Ebeling, M. Grabherr, R. Jäger, R. King, and D. Weidenmann, “High Performance Selectively Oxidized VCSELs and Arrays for Parallel High-Speed Optical Interconnects,” IEEE Transactions on Advanced Packaging, vol. 24, pp. 442-449, Nov., 2001.
[16] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep., 2001.
[17] A. Larsson, C. Carlsson, J. S. Gustavsson, Å. Haglund, P. Modh, and J. Bengtsson, “Direct high-frequency modulation of VCSELs and applications in fibre optic RF and microwave link.” New Journal of Physics 6, Nov. 2004. Invited paper.
[18] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures.”Journal of Applied Physics ,73, pp3769-3781 , 1993.
[19] Van Vechten,” Intermixing of an AlAs-GaAs superlattice by Zn diffusion ” J. Appl. Phys.55, p.607, 1984.
[20] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion“ Appl.Phys.Lett.38,776, 1981.
[21] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice”Semicond. Sci. Technol., 4, pp.841-846, 1989.
[22] 陳志誠”穩態單橫模和穩定極化的面射型雷射”國立台灣大學電機工程學系博士論文 , 民國90年
[23] R. G. Hunsperger, Integrated Optics:Theory and Technology, Hong Kong, Springer-Verlag, 77, 1992.
[24] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, Appl. Phys. Lett. 47, p.1193, 1985.
[25] C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers” Appl. Phys. Lett., vol. 57, pp.218-220, 1990.
[26] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon”, J. Appl. Phys., Vol. 36, p. 3770, 1965.
[27] M. Ochiai et al., Appl. Phys. Lett., 68, 1898.
[28] Kent D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and Robert Hull, “Fabrication and Performance of Selectively xidized Vertical-Cavity Lasers” Photon. Tech. Lett. 7, 1237, 1995.
[29] N. Hplonyak, Jr., and J. M. Dallesasse, USA Patent #5,262,360 , 1993.
[30] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69, 1935-1837 , 1996.
[31] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol 8, pp.740-742, 1996.
[32] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,”Appl. Phys. Lett., vol 66, pp.1723-1725, 1995.
[33] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib,”Cavity characteristics of selectively oxidized vertical-cavity lasers,”Appl. Phys. Lett., vol. 66, pp.3413-3415, 1995.
[34] C. C. Chen, S. J. Liaw, and Y. J. Yang, Member, IEEE, “Stable Single Mode Operation of an 850nm VCSEL with a Higher Order Mode Absorber Formed by Shallow Zn Diffusion.” Photon. Tech. Lett. 13, p266, 2001.
[35] C. C. Chen, S. J. Liaw, and Y. J. Yang, Member, IEEE, “Stable Single Mode Operation of an 850nm VCSEL with a Higher Order Mode Absorber Formed by Shallow Zn Diffusion.” Photon. Tech. Lett. 13, p266, 2001.
[36] Y H Chang, Fang-I Lai, C Y Lu, H C Kuo, H C Yu, C P Sung, H P Yang and S C Wang, Semicond Sci. Technol. 19(2004) L74-L77
[37] Naofumi Suzuki, Hiroshi Hatakeyama, Member, IEEE, Keiichi Tokutome, Kimiyoshi Fukatsu, Mitsuki Yamada, Takayoshi Anan, and Masayoshi Tsuji, IEEE Photon. Thch.Lett. vol.18, no. 12 JUNE 15, 2006, pp. 1368- 1370
[38] A.N. AL-Omari, Member, IEEE, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang, and K. L. Lear, Member, IEEE, IEEE Photon. Technol. Lett. vol. 18, no. 11, pp.1225-1227
[39] K.L. Lear, V.M. Hietala, H.Q. Hou, M. Ochiai, J.J. Banas, B.E. Hammons, J. Zolper, S.P. Kilcoyne, Advances in Vertical Cavity Surface Emitting Lasers in series OSA Trends in Optics and Photonics, vol. 15, pp. 69–74, 1997.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明