博碩士論文 945201087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.15.31.27
姓名 廖昌昱(Chang Yu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以微製程技術製備鋯鈦酸鉛壓電式微重量感測器
(Microfabrication of PZT piezoelectric sensors for microgravimetric applications)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文使用溶膠凝膠法(sol-gel method)製備不同感測面積之鋯鈦酸鉛(PZT)薄膜,之後再利用旋轉塗佈法(spin-coating method)配合微製程技術製作出PZT壓電感測器。藉著X-Ray繞射實驗、電流密度、鐵電分析及阻抗量測,來分析壓電薄膜特性與品質。於本實驗微製程製備下,感測面積過大的試片,壓電薄膜常有較多的雜質與缺陷導致短路而失去本身特性,而以感測面積範圍從80 × 80 μm2到400 × 400 μm2於目前製程技術下特性較好也較易成功,且其共振頻率位於90 MHz~100 MHz之間。
另一部分為外部電路的建構,採用電晶體所組成之共振電路來驅動,並應用一般FM廣播接收IC,將類比共振頻率訊號轉換成直流電壓,最後使用Labview DAQ介面將系統連結至電腦,進而直接於電腦上觀察並監控感測訊號的變化。初步將水滴滴在感測晶片上可得到5~20 kHz的頻率變化,蛋白質(BSA)重量與頻率下降關係實驗方面,每95 ng之BSA所造成的頻率下降平均值為9.503206 kHz,標準差為0.538882 kHz,靈敏度為62.8 Hz cm2/ng
本實驗藉由微製程的技術使晶片微小化,提升晶片感測的靈敏度,並藉由周邊感測電路系統的整合製作,期望成為可攜式、高靈敏度及穩定的微重量感測系統,提供未來生物分子如蛋白質的重量感測。
摘要(英) Our research adopted microfabrication technology to create miniaturized piezoelectric sensors from PZT thin films with different sensing areas prepared with sol-gel method. The characterization and quality of these sensors were examined through X-Ray diffracting measurements, leakage current density analysis, ferroelectricity analysis and impedance measurements. From the results of those analyses, sensors with larger detecting areas failed more easily due to more impurities and defects. Better performances could be obtained with sensor areas from 80 × 80 μm2 to 400 × 400 μm2, with which the resonant frequencies were between 90‐100 MHz.
The other part of our research was the construction of peripheral circuits. We built transistor-based resonant circuits with PZT devices. The resonant frequency was detected with a conventional FM receiver IC, which transformed the frequency signal into a voltage output. The output was observed and monitored on the computer. Preliminary experiments showed that dripping the water on the sensing area caused a frequency change of 5‐20 kHz.
Our miniaturization and using of PZT material led to portable, sensitive and stable piezoelectric sensors. We expect the sensor system to be applicable in protein sensing in the future.
關鍵字(中) ★ 鋯鈦酸鉛
★ 壓電感測器
關鍵字(英) ★ PZT
★ piezoelectric sensor
論文目次 第一章 前言 1
1-1 生物感測器介紹 1
1-2 石英晶體微天平(QCM)介紹 3
1-2-1石英壓電晶體應用沿革 3
1-2-2 石英晶體介紹 7
1-2-3 QCM原理 9
1-2-4 QCM重量(mass)感測公式 10
1-2-5 QCM黏滯度(Viscosity)感測公式 12
1-3 壓電材料PZT介紹 13
1-4壓電感測器於微重量之應用 28
第二章 研究背景 29
2-1 研究動機 29
2-2 研究目標 30
第三章 壓電感測器製作 31
3-1 感測晶片製作 31
3-1-1 感測器結構與光罩設計 31
3-1-2 感測晶片製作 37
3-1-2-1 材料 37
3-1-2-2 基板的選取與處理 37
3-1-2-3 下電極之製作 39
3-1-2-4 壓電薄膜PZT之製備 39
3-1-2-5 上電極與補強層電極之製作 41
3-1-3 晶片製作流程圖與製程參數表 45
3-1-3-1 晶片製作流程圖 45
3-1-4 製程參數表 48
3-2 感測電路 52
3-2-1 材料 52
3-2-2 共振電路說明 52
3-2-3頻率轉換電壓電路 57
3-3 Labview監測畫面 64
3-3-1軟體介面建立方法 64
3-4 蛋白質感測實驗 68
3-4-1 材料 68
3-4-2 實驗方法 68
第四章 實驗結果與討論 69
4-1 壓電薄膜分析 69
4-1-1薄膜表面元素分析 69
4-1-2 薄膜表面形貌分析 72
4-1-3 薄膜結晶方向分析 74
4-2 壓電感測器電性分析 80
4-2-1 電流-電壓量測分析 80
4-2-3電容-電壓與介電常數量測分析 102
4-2-4 阻抗量測分析 111
4-3振盪電路實現 120
4-3-1 共振電路 120
4-3-1-1共振電路Layout 120
4-3-2 頻率轉換電壓電路 125
4-3-2-1頻率轉換電壓電路Layout 125
4-3-3 分壓電路 130
4-3-3-1 分壓電路Layout 130
4-3-4 可攜式系統 132
4-4 監測介面 134
4-5 壓電感測器感測結果分析 136
4-5-1 感測系統初步測試 136
第五章 結論 143
參考文獻 144
參考文獻 [1] P. L. Konash, and G. J. Bastiaans, “Piezoelectric Crystal as Detectors in Liquid Chromatography,” Anal. Chem., vol. 52, pp. 1929-1931, 1980.
[2] T. Nomura, “Single-Drop Method for Determination of Cyanide in Solution with a Piezoelectric Quartz Crystal,” Anal. Chim. Acta, vol. 124, pp. 81-84, 1981.
[3] T. Nomura, and M. Iijima, “Electrolytic Determination of Nanomolar Concentrations of Silver in Solution with a Piezoelectric Quartz Crystal,” Anal. Chim. Acta, vol. 131, pp. 97-102, 1981.
[4] M. Thompson, C. L. Arthur, and G. K. Dhaliwal, “Liquid-Phase Piezoelectric and Acoustic Transmission Studies of Interfacial Immunochemistry,” Anal. Chem., vol. 58, pp. 1206-1209, 1986.
[5] H. Murumatsu, K. Kajiwara, E. Tamiya, and I. Karube, “Piezoelectric Immuno Sensor for the Detection of Candida albicans Microbes,” Anal. Chim. Acta, vol. 188, pp. 257-261, 1986.
[6] White F. M., “Viscous Fluid Flow,” McGraw-Hill, New York 1974.
[7] S. Bruckenstein, and M. Shay, “Experimental Aspects of Using Quartz Crystal Microbalance in Solution,” Electrochim. Acta, vol. 30, pp. 1295-1300, 1985.
[8] K. K. Kanazawa, and J. G. Gordon, “Frequency of a Quartz Microbalance in Contact with Liquid,” Anal. Chem., vol. 57, pp. 1770-1771, 1985.
[9] J.F.Scott, C.A.P.de Araujo, L.D.McMillan, H.Yoshimori, H.Watanabe, T.Mihara, M.Azuma, T.Ueda, Tetsuk Ueda, D.Ueda, and G.Kano, “Ferroelectric Thin Films in Integrated Microelectronic Devices,” Ferroelectrics, vol. 133, pp. 47, 1992.
[10] G.H.Haerting, “Ferroelectric Thin Film for Electronic Applications”, J. Vac. Sci. Technol., vol. A9(3), pp. 414, 1991.
[11] L.M.Sheppard, “Advances in Processing of Ferroelectric Thin Film,” Ceramic Bulletin, vol. 71(1), pp. 85, 1992.
[12] M.Sayer and K.Sreenivas, “Ceramic Thin Film: Fabrication and Applications,” Science, vol. 247, pp. 1056, 1990.
[13] G.Yi and M.Sayer, “Sol-gel Processing of Complex Oxide Films,” Ceramic Bulletin, vol. 70(7), pp. 1173, 1991.
[14] 林諭男,"強介電陶磁薄膜的應用",工業材料,107,(1995)49.
[15] 惠汝生, “Labview 8.X圖控程式應用”, 全華科技圖書, p23~p44.
[16] R. Vaidya, R. J. Simonson, J. Cesarano, D. Dimos, G. P. Lopez, “Formation and Stability of Self-Assembled Monolayers on Thin Films of Lead Zirconate Titanate (PZT),” Am. Chem. Soc., vol. 12, pp. 2830-2836, 1996.
[17] D. Charles, E. Lakeman, and D. A. Payne, “Processing Effects in the Sol-Gel Preparation of PZT Dried Gels, Powders, and Ferroelectric Thin Layers,” J. Am. Ceram. Soc., vol. 75, pp. 3091-3096, 1992.
[18] X. Zheng, Y. Zhou, Z. Yan, “Dependence of Crystalline, Ferroelectric and Fracture Toughness on Annealing in Pb(Zr0.52Ti0.48)O3 Thin Films Deposited by Metal Organic Decomposition,” Mater. Res., vol. 6, pp. 551-556, 2003.
[19] S. Y. Chen, “Texture evolution and electrical properties of oriented PZT thin films,” Mater. Chem. Phys., vol. 45, pp.159-162, 1996.
[20] 饒珮瑩, “利用微機電技術設計及製作壓電式微型加速計”, 國立成功大學航太系碩士論文, 民國92年7月。
[21] C. Kugeler, P. Gerber, U. Bottger, and R. Waser, “Thickness dependence of piezoelectric properties for PZT thin films with regard to MEMS applications,” Integrated Ferroelectrics, vol. 54, pp. 527-535, 2003.
[22] 葉宇寰, “以溶膠-凝膠法及不同熱處理技術製備鉭酸鋰焦電薄膜紅外線感測元件之研究”, 國立中山大學電機系碩士論文, 民國94年7月。
[23] P. Juan, Y. Hu, F. Chiu, J. Y. Lee, “The electrical properties of Metal–Ferroelectric(PbZr0.53Ti0.47O3)–Insulator–Silicon(MFIS) capacitors with different insulator materials,” Microelectron. Eng., vol. 80, pp. 309–312, 2005.
[24] S.K. Pandey, A. R. James, R. Raman, S. N. Chatterjee, A. Goyal, C. Prakash, T. C. Goel, “Structural, ferroelectric and optical properties of PZT thin films,” Physica B, vol. 369, pp. 135–142, 2005.
[25] D. Damjanovic, “Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics,” Rep. Prog. Phys., vol. 61, pp. 1267-1324, 1998.
[26] J. H. Park, T. Y. Kwon, and H. J. Kim, “Resonance properties and sensitivity of monolithic microcantilever sensors actuated by piezoelectric PZT thick film,” J. Electroceram., vol. 17, pp. 565-572, 2006.
[27] E. H. Yang, Y. Hishinuma, and J. G. Cheng, “Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane,” J. Microelectromech. Syst, vol. 15, pp. 1214-1225, 2006
[28] Q. Zhou, J. M. Cannata, and R. J. Meyer, “Fabrication and characterization of micromachined high-frequency tonpilz transducers derived by PZT thick films,” IEEE Trans. UFFC, vol. 52, pp. 350-357, 2005.
[29] M. J. Zipparo, K. K. Shung, and T. R. Shrout, “Piezoceramics for High-Frequency (20 to 100 MHz) Single-Element Imaging Transducers,” IEEE Trans. UFFC, vol. 44, pp. 1038-1048, 1997.
[30] L. E. Cross, ”Ferroelectric Ceramics: Tailoring Properties for Specific Applications,” Basel: Birkhauser Verlag., pp. 1-144, 1993.
[31] S. G. Lee, Y. H. Lee, “Dielectric properties of sol-gel derived PZT(40/60)/PZT(60/40) heterolayered thin films, ”Thin Solid Films, vol. 353, pp. 244-248, 1999.
[32] S. J. Martin, H. L. Bandey, and R. W. Cernosek, “Equivalent circuit model for the thickness shear mode resonator with a viscoelastic film near film resonance,” Anal. Chem., vol. 72, pp. 141–149, 2000.
[33] R. Cernosek, S. J. Martin, A. R. Hillman, and H. L. Bandey, “Comparison of lumped-element and transmission-line models for thicknessshear-mode quartz resonator sensors,” IEEE Trans. UFFC, vol. 45, pp. 1399–1407, 1998.
[34] 陳連春譯,”振盪電路設計應用鐵則”,建興出版社,1995
[35] E. Hong, S. T. Mckinstry, R. L. Smith, S. V. Krishnaswamy, C. B. Freidhoff, “Design of MEMS PZT circular Diaphragm actuators to generate large deflection,” J. Microelectromech. Syst., vol. 15, pp. 832-839, 2006.
[36] 吳朗, “電子陶瓷壓電” 全欣科技圖書, p206~p207.
[37] J. W, W. M. A., J. T., M. L., R. G., W. W., M. S., “Shear mode FBARs as highly sensitive liquid biosensors,” Sens. Actuators, A, vol. 128, pp. 84-88, 2006.
[38] 林佳珈, “穿膜胜肽與生物細胞膜間的交互作用之探討(Ι)-膽固醇的含量對蜂毒胜肽穿膜機制之影響” 國立中央大學化材系碩士論文, 民國93年5月。
[39]http://www.ikm.uni-karlsruhe.de/forschung/pzt_webseiten/eng/pzt_startpage_eng.html
指導教授 蔡章仁(Jang Zern Tsai) 審核日期 2007-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明