博碩士論文 945202027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.218.63.176
姓名 韓樹岡(Shu-gang Han)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 以資料清潔為基礎的拍賣決策輔助系統
(Cleaning of Auction Data for Bidding Decision)
相關論文
★ 行程邀約郵件的辨識與不規則時間擷取之研究★ NCUFree校園無線網路平台設計及應用服務開發
★ 網際網路半結構性資料擷取系統之設計與實作★ 非簡單瀏覽路徑之探勘與應用
★ 遞增資料關聯式規則探勘之改進★ 應用卡方獨立性檢定於關連式分類問題
★ 中文資料擷取系統之設計與研究★ 非數值型資料視覺化與兼具主客觀的分群
★ 關聯性字組在文件摘要上的探討★ 淨化網頁:網頁區塊化以及資料區域擷取
★ 問題答覆系統使用語句分類排序方式之設計與研究★ 時序資料庫中緊密頻繁連續事件型樣之有效探勘
★ 星狀座標之軸排列於群聚視覺化之應用★ 由瀏覽歷程自動產生網頁抓取程式之研究
★ 動態網頁之樣版與資料分析研究★ 同性質網頁資料整合之自動化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,在拍賣網站上做競標已經是非常普遍的購物行為,競標者希望能從中找到便宜的商品做競標。但是因為商品數目太過眾多,使用者需要花很多時間做比較的動作。當使用者輸入想搜尋的商品關鍵字之後,拍賣網站所回傳的符合商品,其實只有很小的比例是使用者真正想要的,這種情況在3C產品類別特別嚴重。我們研究的目標是讓使用者透過我們的系統:CADBid,能夠很有效率地做商品比價的動作。CADBid是一個以web為介面的系統,可以自動對拍賣網站的商品做一個商品過濾的動作,並且將商品的詳細敘述做清潔,最後呈現給使用者一個產品列表,裡面列出他感興趣的商品及其重要產品屬性。我們的研究著重在兩項工作:拍賣商品的過濾及產品敘述的清潔,我們並利用清潔後的產品敘述輔助產品過濾。我們將這兩項工作用分類的方式來處理,並訂出了分類所需的屬性集(feature set)。我們根據這些屬性集,以支撐向量機(Support Vector Machine)建立分類模型來解決我們的問題。從我們的實驗可看出敘述清潔這個動作是有幫助的,因為清潔後的敘述確實提升了產品過濾的準確度,讓拍賣過濾也能達到更好的效果。使用者從透過網路直接使用CADBid的輔助功能,可以很容易地對拍賣產品做比較、比價,而得到很好的線上購物經驗。
摘要(英) Bidding for products on the Internet has become a common activity in our daily life. However, it’s a tedious problem that there are too many items for the bidder to select the cheapest one. In the results providing by eBay, only a small number of results are target items. This is a common situation while the user is searching for a main product in 3C. We aim at helping the bidder compare items easily on auction websites. In this thesis we propose CADBid, which is a web-based system built between auction websites and the bidder. CADBid is able to automatically filter out non-target items and clean the descriptions about these items. Afterward, a list is generated which helps the bidder compare these items. The list only shows the target items along with their important properties. Our work focuses on two tasks. The first task is item filtering. The second is cleaning of descriptions. After cleaning of descriptions, the clean descriptions are used to assist the first task. We view the two tasks as classification problems and propose two feature sets. We build two classification models based on Support Vector Model. Our experiment shows that cleaning of description is helpful because clean descriptions indeed improve the accuracy of item filtering. With CADBid, the bidder will be convenient while making a good decision on which item to bid.
關鍵字(中) ★ 拍賣網站
★ 資料擷取
★ 分類
關鍵字(英) ★ classification
★ auction
★ information extraction
★ cleaning
論文目次 1: INTRODUCTIONS 1
1.1: RESEARCH BACKGROUND 1
1.2: RESEARCH PROBLEMS 4
1.2.1: HUGE NUMBER OF RETURNED ITEMS 4
1.2.2: NOISY DESCRIPTION 5
2: RELATED WORK 9
2.1: AGENTS FOR ELECTRONIC COMMERCE 9
2.2: DATA CLEANING 12
3: SYSTEM IMPLEMENTATION 15
3.1: SYSTEM ARCHETECTURE 15
3.2: CLASSIFICATION MODEL 17
3.3: PREPROCESSING 19
3.4: ITEM FILTERING 20
3.5: CLEANING OF DESCRIPTIONS 21
4: EXPERIMENT 26
4.1: ITEM FILTERING 26
4.2: CLEANING OF DESCRIPTIONS 30
5: CONCLUSION 32
6: REFERENCE 33
參考文獻 [1] R. Benjamin, "Electronic Markets and Virtual Value Chains on the Information Superhighway," Sloan Management Review, pp. 62-71, 1995.
[2] S.-Y. Choi, D. O. Stahl, and A. B. Whinston, “The Economics of Electronic Commerce,” Hampshire: Macmillan Technical Publishing, 1997.
[3] http://www.ebay.com.
[4] http://pages.ebay.co.uk/aboutebay/thecompany/companyoverview.html.
[5] “Statistics You Won't Find on eBay,” Auction Software Review,
http://www.auctionsoftwarereview.com/article-ebay-statistics.asp.
[6] K. Yukitaka, H. Yoshinori, and N. Shogo, "Text Mining Agent for Net Auction," in Proceedings of the 2004 ACM symposium on Applied computing: ACM Press, 2004.
[7] L. Yi, B. Liu, and X. Li, "Eliminating Noisy Information in Web Pages for Data Mining," In Proc. of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Washington, DC, USA, 2003.
[8] S.-H. Lin and J.-M. Ho, "Discovering Informative Content Blocks from Web Documents," in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining Edmonton, Alberta, Canada: ACM Press, 2002.
[9] S. Debnath, P. Mitra, N. Pal, and C. L. Giles, “Automatic Identification of Informative Sections of Web Pages,” IEEE Transactions on Knowledge and Data Engineering 17, 9, Sep. 2005.
[10] V. Vapnik, Statistical Learning Theory. New York: Springer Verlage, 1998.
[11] B. D. Robert, E. Oren, and S. W. Daniel, "A Scalable Comparison-shopping Agent for the World-Wide Web," in Proceedings of the first international conference on Autonomous agents Marina del Rey, California, United States: ACM Press, 1997.
[12] T. Ito, N. Fukuta, T. Shintani, and K. Sycara, "BiddingBot: A Multiagent Support System for Cooperative Bidding in Multiple Auctions," in Proceedings of ICMAS2000, 2000, pp. 435-436.
[13] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma, “Block-based Web Search,” In Proceedings of the 27th Annual international ACM SIGIR Conference on Research and Development in information Retrieval, 2004.
[14] R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma, “Learning Block Importance Models for Web Pages,” In Proceedings of the 13th international Conference on World Wide Web, 2004.
[15] P. Xiang, X. Yang, Y. Shi, “Effective Page Segmentation Combining Pattern Analysis and Visual Separators for Browsing on Small Screens,” Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, 2006.
[16] J. Tang, H. Li, Y. Cao, and Z. Tang, "Email Data Cleaning," in Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining Chicago, Illinois, USA: ACM Press, 2005.
[17] Weka 3: Data Mining Software in Java, http://www.cs.waikato.ac.nz/ml/weka/
[18] CyberNeko HTML Parser,
http://people.apache.org/~andyc/neko/doc/html/index.html
[19] Y. Yang and J. P. Pedersen. “A Comparative Study on Feature Selection in Text Categorization,” In Proceedings of the Fourteenth International Conference on Machine Learning (ICML’97), pages 412~420, 1997.
指導教授 張嘉惠(Chia-Hui Chang) 審核日期 2007-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明