博碩士論文 946201010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:3.142.198.223
姓名 徐睿鴻(Ruei-hong Syu)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 鹿林山與中壢氣膠光學垂直特性之監測與比較
相關論文
★ 雲凝結核計數器的製作與測試★ 桃園地區硫沈降之觀測與模擬
★ 亞洲沙塵暴之模擬★ 不同空氣源次微米氣溶膠活化能力之探討
★ 桃園地區降水化學特性分析★ 鄰近國家嚴重核事故之大氣長程輸送對台灣的影響評估
★ 桃園地區降水化學與硫化物清除係數探討★ 亞洲沙塵好發期間雲水化學特性分析
★ 光達及太陽輻射儀之應用:2005中壢氣膠光學垂直特性及邊界層高度之變化★ 2001年東亞硫沉降之模擬
★ 亞洲生質燃燒氣膠對區域大氣輻射之衝擊及對氣象場的反饋作用★ 北台灣冬季層狀雲化學特性分析
★ 鹿林山空氣品質背景監測站之背景值分析★ 微脈衝光達及太陽輻射儀之應用: 2005-2007年中壢地區氣膠光學垂直特性分析
★ 多重濾鏡旋轉輻射儀與太陽輻射儀之應用: 2006-2008年鹿林山氣膠光學特性之探討★ 不同地域雲凝結核微物理特性之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 此研究為利用太陽輻射儀及微脈衝光達監測比較中壢和鹿林山大氣背景站( LABS , 2862 m ; 23.47 °N, 120.87 °E ) 垂直氣膠光學特性。觀測期間為 2006/04/01 – 2007/03/31, 結果顯示中壢平均氣膠光學厚度為 0.427,鹿林山大氣背景站為 0.108。觀測期間鹿林山、中壢太陽輻射儀所觀測之 τ500 季節平均高值皆出現在春季,分別為 0.233 ± 0.156 、 0.783 ± 0.378。利用光達反演氣膠光學特性之垂直剖面,結果顯示以春季在2 - 4公里之高空較易出現顯之氣膠層。後推軌跡分析結果顯示,春季氣膠之主要來源為東南亞生質燃燒。同時並利用氣流後推軌跡將氣膠來源分類,探討中壢當地與亞洲出流氣膠之貢獻量。
利用光達反演中壢高空 3 公里 以上之氣膠光學厚度垂直剖面,與鹿林山太陽輻射儀量測之氣膠光學厚度比較。結果顯示兩者呈線性相關,相關係數為 0.91,鹿林山大氣背景站可應用於解釋中壢 3 公里以上氣膠光學特性。
此外,於沙塵個案中,鹿林山與中壢太陽輻射儀所觀測之τ527分別為 0.02 – 0.10,0.12 - 0.94,於生質燃燒個案中,鹿林山 τ527為0.14 - 0.91。結果顯示生質燃燒與沙塵氣膠對鹿林山氣膠光學厚度的影響。
摘要(英) The purpose of this study is to characterize the vertical profiles of aerosol optical properties measured by the sunphotometer and micro-pulse lidar in Chung-Li, located in the northwestern Taiwan during April 2006 to March 2007. Above results are compared with those data measured at the Mt. Lulin Atmospheric Background Station (LABS, 2,868 m; 23.47°N, 120.87°E). The average aerosol optical depth is 0.41 and 0.08 for Chung-Li and Mt. Lulin, respectively. The maximum values of seasonally mean aerosol optical depths at 500 nm occurred both at Mt. Lulin ( 0.231 ± 0.166 ) and in Chung-Li ( 0.729 ± 0.360 ) in Spring, respectively. Retrieving micro-pulse lidar data, aerosol level was found appreciably at the altitude of 2 – 4 km. Based on trajectory analysis, main sources of aerosol particles come from South-east Asia biomass burning in Spring. Major sources of aerosol particles are mainly associated with local pollution and Asia outflow pollutants.
The aerosol optical depth measured by micro-pulse lidar over the altitude of 3 km in Chung-Li is compared with aerosol optical depth at Mt. Lulin. As the result, the correlation coefficient is 0.91. That is to say, the aerosol optical depth over the altitude of 3 km in Chung-Li is shown the result about 81% by observed at Mt. Lulin.
In addition, the aerosol optical depth measured by sunphotometer at Mt. Lulin and in Chung-Li is 0.02 – 0.10、0.12 - 0.94 during the dust event. It means dust effect is weaker at Mt. Lulin. The aerosol optical depth at Mt. Lulin is 0.14 - 0.91 during the biomass burning event. It means the BC concentration is high.
關鍵字(中) ★ 氣膠光學厚度 關鍵字(英) ★ Angstrom exponent
論文目次 摘要 ................................................. I
致謝 ................................................ III
目錄 ................................................. IV
表目錄 ............................................... VI
圖目錄 .............................................. VII
第一章 前 言 ........................................ 1 
1.1 研究動機 ..................................... 1
1.2 研究目的 ..................................... 3
第二章 文 獻 回 顧 ................................... 4
2.1 氣膠之輻射效應 ................................ 4
2.2 氣膠光學垂直特性 .............................. 6
2.3 亞洲沙塵暴 .................................... 10
2.4 東南亞生質燃燒 ............................... 12
第三章 研 究 方 法 ................................. 14
3.1 研究架構 ..................................... 14
3.2 實驗時間與地點 ............................... 14
3.3 實驗設備與觀測原理 ........................... 16
3.3.1 太陽輻射儀 ............................... 16
3.3.2 微脈衝光達 ............................... 18
3.4 氣膠光學特微參數 ............................. 20
3.4.1 氣膠光學厚度 ............................. 20
3.4.2 Ångström exponent .......................... 21
第四章 結 果 與 討 論 ................................ 22
4.1 鹿林山與中壢氣膠光學垂直特性及地面監測資料分析. 22
4.2 鹿林山與中壢與氣膠光學度之季節變化 ........... 24
4.3 鹿林山與中壢高空之氣膠光學度比較 ............. 26
4.4 境外氣膠對鹿林山氣膠光學特性之影響........ 27 4.5 中壢當地氣膠對光學厚度之貢獻量估計 ............ 28
4.6 東亞鄰近測站垂直氣膠光學特性之比較 ............ 31
4.7 個案探討 ...................................... 32
第五章 結 論 與 未 來 展 望 ........................ 38
5.1 結論 ....................................... 38
5.2 未來展望 ................................... 41
參考文獻 ............................................ 42
參考文獻 王聖翔,2007:亞洲生質燃燒氣膠對區域環境與大氣輻射之衝擊及對氣象場的反饋作用。國立中央大學大氣物理研究所博士論文,中壢。
江智偉,2005:對流層氣膠光學性質之研究 。國立中央大學物理研究所博士論文,中壢。
李崇德、宋鎮宇、王俊凱、張士昱及王證權,2001:沙塵暴期間台北地區氣膠散光係數和物理化學特性,大陸沙塵暴對台灣地區空氣
品質影響與預測研討會論文。
吳承翰,2002:亞洲沙塵暴之模擬。國立中央大學大氣物理研究所碩士論文,中壢。
林和駿,林博雄及劉紹臣,2005:台灣南北城市氣膠光學厚度的特 徵,中華民國國際氣膠科技研討會,203 – 212。
林能暉、王家麟、李崇德及許桂榮,2006:鹿林山背景站測試採樣分析與國際合作之參與及推動研究專案工作計劃,行政院環境保護署。
林能暉、彭啟明及吳承翰,2001:大陸沙塵暴之長程傳送:模式模擬與個案探討,環保署大陸沙塵暴研討會。
林能暉、劉振榮及倪簡白,2002:高污染區域大氣邊界層密集觀測及對污染物擴散之研究,行政院環境保護署。
郭俊江,2005:光達及太陽輻射儀之應用:2005 年中壢氣膠光學垂直特性及邊界層高度之變化。國立中央大學大氣物理研究所碩士論文,中壢。
Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E.J. Welton (2000), Reduction of tropical cloudiness by soot, Science, 288,1,042-1,047.
Andreae, M. O., C. D. Jones, and P. M. Cox (2005), Strong present-day aerosolcooling implies a hot future, Nature, 435, 1,187-1,190.
Campbell, J.R., D.L. Hlavka, E.J. Welton, C.J. Flynn, D.D. Turner, J.D.
Spinhirne, V.S. Scott, and I.H. Hwang, 2002, Full-time, Eye-Safe
Cloud and Aerosol Lidar Observation at Atmospheric Radiation
Measurement Program Sites: Instrument and Data Processing, J.
Atmos. Oceanic Technol., 19, 431-442.
Chan, L.Y., H. Y. Liu, K. S. Lam, T. Wang, S. J. Oltmans, J. M. Harris (1998), Analysis of the seasonal behavior of tropospheric ozone at Hong Kong. Atmos. Environ, 32, 159-168.
Chou Ming-Dah, Po-Hsiung Lin, Po-Lun Ma,1, and Ho-Jiunn Lin,( 2006 ) Effects of aerosols on the surface solar radiation in a tropical urban
area. J. Gerphys. Res, 111, D15207, doi:10.1029/2005JD006910.
Eck, T. F., B. N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H. B. Chen,
B. Chatenet, L. Gomes, X.-Y. Zhang, S.-C. Tsay, Q. Ji, D. Giles, and
I. Slutsker, 2005, Columnar aerosol optical properties at AERONET
sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J. Gerphys. Res., 110, D06202, doi:10.1029/2004JD005274.
Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate response, J. Geophys. Res., 102, (D6), 6,831–6,864.
Haywood J. M., O. Boucher (2000), Estimates of the direct and indirect radiative forcing due to tropospheric aserosol: a review. Reviews of Geophysics, 38, 513-543.
Holben, B. N., T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E.
Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I.
Jankowiak, and A. Smirnov, 1998, AERONET-A federated
instrument network and data archive for aerosol characterization.
Remote Sensing of Environment, 66, 1-16.
Jacobson, M. Z. (2004), The short-term cooling but long-term global warming due to biomass burning, J. Clim., 17, 2,909-2,926.
Kurosaki, Y., and M. Mikami, Recent frequent dust events and their relation to surface wind in East Asia, Geophys. Res. Lett., 30, 14, 1736, 2003.
Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman, and H. Cachier (1996), A global three-dimensional model study of carbonaceous aerosols, J. Geophys. Res., 101(D14), 19,411–19,432.
Lohmann, U., and M. Wild (2005), Solar Dimming, Global Change NewsLetter, 63,21-22.
Menon S., J. Hansen, L. Nazarenko, Y. Luo (2002), Climate effects of black carbon aerosols in China and India. Science, 297, 2,250-2,253.
Niranjan, K., Madhavan, B. L., Sreekanth V, 2007, Micro pulse lidar observation of high altitude aerosol layers at Visakhapatnam located on the east coast of India. Geophys. Res. Lett., 34, L03815, doi:1029/2006GL028199.
Ogunjobi, K. O., Z. He, K. W. Kim, and Y. J. Kim, 2004, Aerosol optical
depth during episodes of Asian dust storms and biomass burning at
Kwangju, South Korea, Atmos. Environ., 38, 1313 – 1323.
Peng, C. M. and N. H. Lin (2002), Long-range transport of Asian dust: An integrated modeling study. 6th International Aerosol Conference (IAC2002), 663-664.
Pe´rez C., S. Nickovic, J. M. Baldasano, M. Sicard, F. Rocadenbosch, and V. E. Cachorro5, 2006, A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling, J. Geophys. Res., 111, D15214, doi:10.1029/2005JD006579.
Ramanathan, V., et al. (2001a), Indian Ocean Experiment (INDOEX): An integrated assessment of the climate forcing and effects of great Indo-Asian haze, J. Geophys. Res., 106, 28,371-28,289.
Sano, I., S. Mukai, Y. Okada, B. N. Holben, S. Ohta, and T. Takamura,
2003, Optical properties of aerosols durning APEX and ACE-Asia
experiments, J. Gerphys. Res., 108, D23, doi:10.1029/2002JD00 3263.
Saxena, V. K., et al., 1997: Impact of stratospheric volcanic aerosols
on climate: evidence for aerosol short wave and long wave forcing in the southeast US. Atmos. Environ., 33, 1767.
Twomey, S. (1974), Pollution and the planetary albedo, Atmos. Environ., 8,
1251-1256.
Wang, S.H., Lin, N. H; Chou, M. D.; Woo, J. H. (2007), Estimate of radiative forcing of Asian biomass-burning aerosols during the period of TRACE-P. J.Geophys.Res., 112, No. D10, D1022210.1029/2006JD007564
Yonemura, S., H. Tsuruta, T. Maeda, S. Kawashima, S. Sudo, M. Hayashi (2002), Tropospheric ozone variability over Singapore from August 1996 to December 1999. Atmos. Environ, 36, 2,061-2,070.
指導教授 林能暉(Neng-Hui Lin) 審核日期 2007-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明